簡易檢索 / 詳目顯示

研究生: 涂宏雅
Tu, Hung-Ya
論文名稱: 干擾哺乳類視網膜外層神經功能對無軸突細胞網絡之影響
Effects of disrupted outer retinal function on amacrine cell circuits in mammalian retinas
指導教授: 焦傳金
Chiao, Chuan-Chin
口試委員: 范龍生
Fan, Long-Sheng
連正章
Lien, Cheng-Chang
王致恬
Wang, Chih-Tien
陳示國
Chen, Shih-Kuo
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 98
中文關鍵詞: AII無軸突細胞星狀無軸突細胞間隙通道蛋白36神經活性視桿細胞傳訊路徑感光細胞退化全暗養殖
外文關鍵詞: AII amacrine cell, Starburst amacrine cell, Connexin 36, Neural activity, Rod photoreceptor pathway, Photoreceptor degeneration, Dark-rearing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 哺乳類動物的視網膜被認為是中樞神經系統最容易取得以進行研究的部分。其中位於視網膜外層的感光細胞將視覺刺激轉化成膜電位變化並釋放神經傳導物質,經由位於外突觸層的神經突觸將外界來的視覺訊號從少數幾種感光細胞(視錐及視桿細胞)分散至數種雙極細胞,再傳遞給下游為數眾多的無軸突細胞和節細胞。截至目前為止已有許多研究力圖闡明,在視網膜發育過程中出現的視網膜波此一自發神經活性對於後端視覺神經系統的影響;至於當源自視網膜外層的訊號無法正常傳遞時,對於內層神經細胞在功能上的影響則相對了解得較少。此篇博士學位論文描述了當在幼兔及成體小鼠上分別以施予藥物及轉殖基因的方式阻斷視網膜內外層的訊號傳遞時,對於AII無軸突細胞和星狀無軸突細胞所造成的影響。藉由這兩個彼此獨立的研究,本論文說明了在哺乳類視網膜中,神經網絡對於不等程度的神經活性變化具有不同的適應機制。
    過去在成體動物中,已有諸多研究描述了多條視桿細胞傳訊路徑,包含參與其中的細胞種類及調節機制,其中由Cx36蛋白構成的間隙通道在多條路徑裡皆扮演了關鍵的角色,尤以AII無軸突細胞主導的路徑最廣為人知;然而,在該路徑的發育過程中,Cx36 間隙通道的參與程度及調控則尚未明瞭。在此論文第一部分的研究中,藉由免疫染色首先說明了幼兔視網膜裡Cx36蛋白在不同發育階段的空間分布情形,並且利用顯微注射染劑的方式發現,在出生後十天大的幼兔視網膜上,即便AII無軸突細胞已表達了少量Cx36蛋白,這些細胞仍未形成穩定、可讓特定染劑通透的間隙通道結構,反之需至出生後第三週方具有和成兔視網膜相仿的通透能力;此外,「全暗養殖」及「藥物注射」這兩種可在發育過程中阻斷神經活性的方式都導致AII無軸突細胞的Cx36表現量提高。上述的發現表示此路徑可能不如過去所猜測的,在開眼時已具有高度成熟的訊息傳遞功能,並且其中的間隙通道可能受到視網膜外層神經活性的調控。
    另一方面,在許多成體小鼠的研究中發現,感光細胞退化(如rd1和rd10)會導致視網膜節細胞產生自發、有節律的神經活性,近期數篇文獻則指出,這些神經活性是由AII無軸突細胞自發產生、並藉由其間隙通道網絡傳遞至雙極細胞而後至節細胞。在第二部分的研究中,使用了轉殖基因小鼠rhoΔCTA作為感光細胞退化的動物模型進行研究,此種小鼠的退化病程與rd1相似,故可藉此了解在不同退化模型上是否具有相似的自發神經活性及機制。在rhoΔCTA視網膜中發現除了部分節細胞之外,兩種亞群的星狀無軸突細胞亦有類似於rd1節細胞的神經活性,並且是受到以麩胺酸作為神經傳導物質的雙極細胞驅動;當阻斷快鈉通道(NaV)及間隙通道時,皆會導致這些神經活性消失。當利用多巴胺阻斷AII細胞的間隙通道網絡以及利用flupirtine阻斷AII細胞上的M型鉀通道時,則只會抑制ON類型的星狀細胞神經活性,對OFF類型的星狀細胞則沒有顯著影響。上述的結果表示可能有第二種不同於AII假說的細胞機制,在感光細胞退化時與AII無軸突細胞並行引發視網膜內層的高度神經活性。
    總結而言,此篇論文研究分別在幼兔及成鼠視網膜上觀察到阻斷視網膜外層神經活性所導致的內層神經細胞改變,不論是在蛋白質表現量或神經突觸傳遞活動上,皆說明了哺乳類視網膜神經網絡中的縱向調控對於不等程度的神經活性變化有不同的適應機制。


    The mammalian retina is considered as the most accessible part of the central nervous system. Visual stimuli are detected by photoreceptors in the outer retina, and then transmitted to the inner retinal neurons including bipolar cells, amacrine cells, and retinal ganglion cells. The first synapses are between the photoreceptors and bipolar cells at the outer plexiform layer, where the visual signals are diverged into parallel pathways via diverse bipolar cell types. While many studies have focused on the effects of spontaneous retinal activities, such as retinal waves, on the development of visual system, fewer efforts have been put to characterize the functional changes of inner retinal neurons in the absence of outer retinal activities. In this dissertation, I examined two most important amacrine cell types – AII amacrine cells (AII-ACs) in developing rabbit retina and starburst amacrine cells (SACs) in adult mouse retina under the conditions of pharmacologically and genetically altered signal transmission from the outer retina to the inner retina, respectively. These two independent studies are described separately here, and they represent a coherent effort in elucidating the cellular mechanisms of activity dependent circuitry adaptation in mammalian retinas.
    The rod photoreceptor signaling pathways in adult retina have been extensively investigated and characterized in terms of the distinctive components and light-adaptive properties. Gap junctions are composed of connexin 36 (Cx36) and play critical roles in most of these pathways, despite little is known about the contribution and regulation of gap junctions to the development of the AII-AC mediated primary rod pathway. Using immunohistochemistry and microinjection, the first study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII-ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult-like tracer coupling pattern. Moreover, studies using dark-rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII-ACs were increased when neural activity was inhibited. These findings suggest that Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina.
    It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. An autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. Excitatory postsynaptic current (EPSC) oscillations and non-rhythmic inhibitory postsynaptic currents (IPSCs) were observed in both ON- and OFF-SACs. Similar to reported RGC oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockades of NaV channels and gap junctions, suggesting that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. However, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. The latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen the intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD.
    In conclusion, disruption of outer retinal activities in either developing rabbit retina or mature mouse retina results in changes of protein expression and synaptic transmission in inner retinal neurons, respectively. These two studies demonstrate a vertically modulated circuitry adaptation in mammalian retinas.

    誌謝 ii Abstract iii 摘要 vi Abbreviations ix Contents x Chapter I: Introduction 1 1.1 The fundamental plan of mammalian retina 1 1.2 AII amacrine cells 2 1.2.1 AII-mediated primary rod pathway and the alternative pathways 2 1.2.2 Regulation of Cx36 gap junction conductance in AII amacrine cells 4 1.3 Starburst amacrine cells 5 1.3.1 Synaptic transmission of starburst amacrine cells 5 1.3.2 Starburst amacrine cells in the direction-selective circuit 6 1.4 Inner retinal hyperactivity in deafferentated retinas 6 1.5 Specific aims 8 1.5.1 Specific aim of study #1: Dependence of Cx36 expression in AII amacrine cells on the outer retinal activity 9 1.5.2 Specific aim of study #2: Hyperactivity of starburst amacrine cells in the rhoΔCTA mouse 11 Chapter II: Materials and Methods 14 2.1 Ethical approval 14 2.2 Animal use 14 2.2.1 Study #1 14 2.2.2 Study #2 15 2.3 Intraocular injection 16 2.4 Retinal preparation 17 2.4.1 Study #1 17 2.4.2 Study #2 17 2.5 Intracellular dye injection 18 2.6 Immunohistochemistry 19 2.7 Electrophysiology 21 2.8 Pharmacology 23 2.9 Image acquisition 23 2.9.1 Study #1 23 2.9.2 Study #2 24 2.10 Data analysis 24 2.10.1 Study #1 24 2.10.2 Study #2 25 Chapter III: Results 26 3.1 Study #1: the dependence of AII-mediated rod pathway maturation on outer retinal activity 26 3.1.1 Connexin 36 protein immunoreactivity massively increases at around the time of eye opening 26 3.1.2 Functional gap junctions in AII amacrine cells do not mature until the third postnatal week 29 3.1.3 The relative expression level of Cx36 protein is potentially upregulated upon visual deprivation and glutamatergic transmission blockade 31 3.1.4 Summary 33 3.2 Study #2: the hyperactivities of starburst amacrine cells driven by distinct cellular mechanisms in degenerated mouse retina 34 3.2.1 Rhythmic membrane potential fluctuation is found in starburst amacrine cells of adult rhoΔCTA mouse retina 34 3.2.2 Different cellular mechanisms underlie the oscillation of the two starburst amacrine cell subtypes 36 3.2.3 Summary 38 Chapter IV: Discussion 39 4.1 Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina 39 4.1.1 Development of the rod photoreceptor signaling pathways 40 4.1.2 Developmental regulation of Cx36 expression in AII amacrine cells 43 4.1.3 Roles of AII amacrine cells and Cx36 beyond rod photoreceptor signaling 47 4.2 Inner retinal hyperactivity in photoreceptor degenerated retinas 48 4.2.1 ON-SAC oscillations in wild type and rhoΔCTA mice 49 4.2.2 Inhibition of ON-SAC oscillation in rhoΔCTA mice by dopamine and flupirtine 51 4.2.3 Mechanism underlying OFF-SAC oscillation 53 4.2.4 Oscillation as a means to probe diversity of inner retinal neurons 55 4.2.5 Generality and function of neuronal hyperactivity in deafferentated retinas 56 4.3 Conclusion 58 References 60 Table 76 Table 1. The tracer coupling percentages of injected AII amacrine cells at different developmental stages of the rabbit retina. 76 Figures 77 Figure 1. Postnatal changes in Cx36 immunoreactivity across vertical sections of the rabbit retina. 77 Figure 2. Distribution of Cx36-positive puncta in the AII amacrine cell processes of the developing rabbit retina. 79 Figure 3. Only a minority of AII amacrine cells in the rabbit retina are tracer coupled at the time of eye-opening. 81 Figure 4. The majority of AII amacrine cells are tracer coupled in the P21 rabbit retina. 84 Figure 5. The only AII amacrine cell from the P21 rabbit retina that showed no tracer-coupling pattern. 85 Figure 6. Postnatal development of dopaminergic amacrine cells in the rabbit retina. 86 Figure 7. Cx36 immunoreactivity is upregulated in DR rabbit retinas. 88 Figure 8. Cx36 immunoreactivity is enhanced in postnatal rabbit retinas upon blocking AMPA receptor mediated neurotransmission. 90 Figure 9. Membrane potential oscillation in retinal ON- and OFF-SACs of the rhoΔCTA mouse. 91 Figure 10. Distinct excitatory and inhibitory inputs underlying membrane potential oscillation in ON- and OFF-SACs. 92 Figure 11. Oscillation is driven by glutamatergic excitation and modulated by GABAergic inhibition. 93 Figure 12. Dopamine inhibits EPSC oscillation of ON- but not OFF-SACs. 95 Figure 13. Flupirtine inhibits ON-SAC but not OFF-SAC oscillation. 96 Figure 14. AII and starburst amacrine cell circuits in the mammalian retinas. 98

    Akimov, N.P., and Renteria, R.C. (2014). Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells. Dev Neurobiol 74, 692-706. doi: 10.1002/dneu.22164.
    Ames, A., 3rd, and Nesbett, F.B. (1981). In vitro retina as an experimental model of the central nervous system. J Neurochem 37, 867-877.
    Arumugam, H., Liu, X., Colombo, P.J., Corriveau, R.A., and Belousov, A.B. (2005). NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci 8, 1720-1726. doi: 10.1038/nn1588.
    Balmer, J., Ji, R., Ray, T.A., Selber, F., Gassmann, M., Peachey, N.S., Gregg, R.G., and Enzmann, V. (2013). Presence of the Gpr179(nob5) allele in a C3H-derived transgenic mouse. Mol Vis 19, 2615-2625.
    Barlow, H.B. (1975). Visual experience and cortical development. Nature 258, 199-204.
    Barrett, J.M., Degenaar, P., and Sernagor, E. (2015). Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front Cell Neurosci 9, 330. doi: 10.3389/fncel.2015.00330.
    Belousov, A.B. (2011). The regulation and role of neuronal gap junctions during development. Commun Integr Biol 4, 579-581. doi: 10.4161/cib.4.5.16380.
    Bence, M., and Levelt, C.N. (2005). Structural plasticity in the developing visual system. Prog Brain Res 147, 125-139. doi: 10.1016/S0079-6123(04)47010-1.
    Bisti, S., Gargini, C., and Chalupa, L.M. (1998). Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. J Neurosci 18, 5019-5025.
    Biswas, S., Haselier, C., Mataruga, A., Thumann, G., Walter, P., and Muller, F. (2014). Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One 9, e99075. doi: 10.1371/journal.pone.0099075.
    Blankenship, A.G., Ford, K.J., Johnson, J., Seal, R.P., Edwards, R.H., Copenhagen, D.R., and Feller, M.B. (2009). Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62, 230-241. doi: 10.1016/j.neuron.2009.03.015.
    Bloomfield, S.A., and Dacheux, R.F. (2001). Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20, 351-384.
    Bloomfield, S.A., and Volgyi, B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10, 495-506. doi: 10.1038/nrn2636.
    Bodnarenko, S.R., Jeyarasasingam, G., and Chalupa, L.M. (1995). Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J Neurosci 15, 7037-7045.
    Borghuis, B.G., and Fransen, J.W. (2015). A temporal gradient of excitatory input contributes to direction selectivity in the dendrites of OFF starburst amacrine cells. Invest Ophthalmol Vis Sci 56, ARVO E-Abstract 2613.
    Borowska, J., Trenholm, S., and Awatramani, G.B. (2011). An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci 31, 5000-5012. doi: 10.1523/JNEUROSCI.5800-10.2011.
    Bowe-Anders, C., Miller, R.F., and Dacheux, R. (1975). Developmental characteristics of receptive organization in the isolated retina-eyecup of the rabbit. Brain Res 87, 61-65.
    Boycott, B.B., and Wassle, H. (1991). Morphological Classification of Bipolar Cells of the Primate Retina. Eur J Neurosci 3, 1069-1088.
    Brecha, N.C., Oyster, C.W., and Takahashi, E.S. (1984). Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Invest Ophthalmol Vis Sci 25, 66-70.
    Casini, G., and Brecha, N.C. (1992a). Postnatal development of tyrosine hydroxylase immunoreactive amacrine cells in the rabbit retina: I. Morphological characterization. J Comp Neurol 326, 283-301. doi: 10.1002/cne.903260210.
    Casini, G., and Brecha, N.C. (1992b). Postnatal development of tyrosine hydroxylase immunoreactive amacrine cells in the rabbit retina: II. Quantitative analysis. J Comp Neurol 326, 302-313. doi: 10.1002/cne.903260211.
    Casini, G., Grassi, A., Trasarti, L., and Bagnoli, P. (1996). Developmental expression of protein kinase C immunoreactivity in rod bipolar cells of the rabbit retina. Vis Neurosci 13, 817-831.
    Casini, G., Rickman, D.W., Trasarti, L., and Brecha, N.C. (1998). Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. Brain Res Dev Brain Res 111, 107-117.
    Cembrowski, M.S., Logan, S.M., Tian, M., Jia, L., Li, W., Kath, W.L., Riecke, H., and Singer, J.H. (2012). The mechanisms of repetitive spike generation in an axonless retinal interneuron. Cell Rep 1, 155-166. doi: 10.1016/j.celrep.2011.12.006.
    Chan, Y.C., and Chiao, C.C. (2008). Effect of visual experience on the maturation of ON-OFF direction selective ganglion cells in the rabbit retina. Vision Res 48, 2466-2475. doi: 10.1016/j.visres.2008.08.010.
    Chan, Y.C., and Chiao, C.C. (2013). The distribution of the preferred directions of the ON-OFF direction selective ganglion cells in the rabbit retina requires refinement after eye opening. Physiol Rep 1, e00013. doi: 10.1002/phy2.13.
    Chang, Y.C., and Chiao, C.C. (2008). Localization and functional mapping of AMPA receptor subunits in the developing rabbit retina. Invest Ophthalmol Vis Sci 49, 5619-5628. doi: 10.1167/iovs.07-1565.
    Chen, C.K.J., Bang, A., Chen, Y.J., Mcquiston, A.R., Tu, H.Y., and Chiao, C.C. (2015). Cell-autonomous changes in displaced cholinergic amacrine cells lacking G beta 5. Invest Ophthalmol Vis Sci 56, ARVO E-Abstract 3231.
    Chen, J., Makino, C.L., Peachey, N.S., Baylor, D.A., and Simon, M.I. (1995). Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267, 374-377.
    Chiao, C.C., and Masland, R.H. (2002). Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J Neurosci 22, 10509-10513.
    Choi, H., Zhang, L., Cembrowski, M.S., Sabottke, C.F., Markowitz, A.L., Butts, D.A., Kath, W.L., Singer, J.H., and Riecke, H. (2014). Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol 112, 1491-1504. doi: 10.1152/jn.00437.2014.
    D'orazi, F.D., Suzuki, S.C., and Wong, R.O. (2014). Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 37, 594-603. doi: 10.1016/j.tins.2014.07.009.
    Dacheux, R.F., and Raviola, E. (1986). The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci 6, 331-345.
    Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A., and Paul, D.L. (2002). Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703-712.
    Deboer, D.J., and Vaney, D.I. (2005). Gap-junction communication between subtypes of direction-selective ganglion cells in the developing retina. J Comp Neurol 482, 85-93. doi: 10.1002/cne.20351.
    Demas, J., Sagdullaev, B.T., Green, E., Jaubert-Miazza, L., Mccall, M.A., Gregg, R.G., Wong, R.O., and Guido, W. (2006). Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron 50, 247-259. doi: 10.1016/j.neuron.2006.03.033.
    Demb, J.B., and Singer, J.H. (2012). Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci 29, 51-60. doi: 10.1017/S0952523811000368.
    Dong, W., Sun, W., Zhang, Y., Chen, X., and He, S. (2004). Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina. J Physiol 556, 11-17. doi: 10.1113/jphysiol.2004.060715.
    Dunn, F.A., Della Santina, L., Parker, E.D., and Wong, R.O. (2013). Sensory experience shapes the development of the visual system's first synapse. Neuron 80, 1159-1166. doi: 10.1016/j.neuron.2013.09.024.
    Famiglietti, E.V. (1985). Starburst amacrine cells: morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. J Neurosci 5, 562-577.
    Famiglietti, E.V., Jr. (1983). 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res 261, 138-144.
    Famiglietti, E.V., Jr., and Kolb, H. (1975). A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res 84, 293-300.
    Farshi, P., Fyk-Kolodziej, B., Krolewski, D.M., Walker, P.D., and Ichinose, T. (2015). Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol. doi: 10.1002/cne.23932.
    Feigenspan, A., Janssen-Bienhold, U., Hormuzdi, S., Monyer, H., Degen, J., Sohl, G., Willecke, K., Ammermuller, J., and Weiler, R. (2004). Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24, 3325-3334. doi: 10.1523/JNEUROSCI.5598-03.2004.
    Firl, A., Ke, J.B., Zhang, L., Fuerst, P.G., Singer, J.H., and Feller, M.B. (2015). Elucidating the role of AII amacrine cells in glutamatergic retinal waves. J Neurosci 35, 1675-1686. doi: 10.1523/JNEUROSCI.3291-14.2015.
    Firl, A., Sack, G.S., Newman, Z.L., Tani, H., and Feller, M.B. (2013). Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves. J Neurophysiol 109, 1969-1978. doi: 10.1152/jn.00039.2013.
    Firth, S.I., Li, W., Massey, S.C., and Marshak, D.W. (2003). AMPA receptors mediate acetylcholine release from starburst amacrine cells in the rabbit retina. J Comp Neurol 466, 80-90. doi: 10.1002/cne.10880.
    Frank, M., Eiberger, B., Janssen-Bienhold, U., De Sevilla Muller, L.P., Tjarks, A., Kim, J.S., Maschke, S., Dobrowolski, R., Sasse, P., Weiler, R., Fleischmann, B.K., and Willecke, K. (2010). Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart. J Cell Sci 123, 3605-3615. doi: 10.1242/jcs.068668.
    Ghosh, K.K., Bujan, S., Haverkamp, S., Feigenspan, A., and Wassle, H. (2004). Types of bipolar cells in the mouse retina. J Comp Neurol 469, 70-82. doi: 10.1002/cne.10985.
    Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., and Heintz, N. (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917-925. doi: 10.1038/nature02033.
    Goo, Y.S., Ahn, K.N., Song, Y.J., Ahn, S.H., Han, S.K., Ryu, S.B., and Kim, K.H. (2011). Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice. Korean J Physiol Pharmacol 15, 415-422. doi: 10.4196/kjpp.2011.15.6.415.
    Gorfinkel, J., Lachapelle, P., and Molotchnikoff, S. (1988). Maturation of the electroretinogram of the neonatal rabbit. Doc Ophthalmol 69, 237-245.
    Grubb, M.S., Rossi, F.M., Changeux, J.P., and Thompson, I.D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40, 1161-1172.
    Hack, I., Frech, M., Dick, O., Peichl, L., and Brandstatter, J.H. (2001). Heterogeneous distribution of AMPA glutamate receptor subunits at the photoreceptor synapses of rodent retina. Eur J Neurosci 13, 15-24.
    Hack, I., Peichl, L., and Brandstatter, J.H. (1999). An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc Natl Acad Sci U S A 96, 14130-14135.
    Hampson, E.C., Vaney, D.I., and Weiler, R. (1992). Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12, 4911-4922.
    Hartveit, E., and Veruki, M.L. (2012). Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 1487, 160-172. doi: 10.1016/j.brainres.2012.05.060.
    Hilgen, G., Von Maltzahn, J., Willecke, K., Weiler, R., and Dedek, K. (2011). Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol 519, 433-450. doi: 10.1002/cne.22526.
    Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O. (2014). Functional architecture of the retina: development and disease. Prog Retin Eye Res 42, 44-84. doi: 10.1016/j.preteyeres.2014.06.003.
    Huberman, A.D., Wei, W., Elstrott, J., Stafford, B.K., Feller, M.B., and Barres, B.A. (2009). Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327-334. doi: 10.1016/j.neuron.2009.04.014.
    Ichinose, T., and Lukasiewicz, P.D. (2007). Ambient light regulates sodium channel activity to dynamically control retinal signaling. J Neurosci 27, 4756-4764. doi: 10.1523/JNEUROSCI.0183-07.2007.
    Ishii, T., and Kaneda, M. (2014). ON-pathway-dominant glycinergic regulation of cholinergic amacrine cells in the mouse retina. J Physiol 592, 4235-4245. doi: 10.1113/jphysiol.2014.271148.
    Iuvone, P.M. (1984). Regulation of retinal dopamine biosynthesis and tyrosine hydroxylase activity by light. Fed Proc 43, 2709-2713.
    Iuvone, P.M., Galli, C.L., Garrison-Gund, C.K., and Neff, N.H. (1978). Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901-902.
    Ivanova, E., Yee, C.W., Baldoni, R., Jr., and Sagdullaev, B.T. (2015a). Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36-containing gap junctions. Exp Eye Res. doi: 10.1016/j.exer.2015.05.013.
    Ivanova, E., Yee, C.W., and Sagdullaev, B.T. (2015b). Disruption in dopaminergic innervation during photoreceptor degeneration. J Comp Neurol. doi: 10.1002/cne.23899.
    Ivanova, E., Yee, C.W., and Sagdullaev, B.T. (2015c). Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front Cell Neurosci 9, 390. doi: 10.3389/fncel.2015.00390.
    Jeon, M.H., and Jeon, C.J. (1998). Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res 32, 75-84.
    Johnson, R.E., and Kerschensteiner, D. (2014). Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the developing retina. Curr Biol 24, 2301-2306. doi: 10.1016/j.cub.2014.08.018.
    Jones, B.W., and Marc, R.E. (2005). Retinal remodeling during retinal degeneration. Exp Eye Res 81, 123-137. doi: 10.1016/j.exer.2005.03.006.
    Jones, B.W., Watt, C.B., Frederick, J.M., Baehr, W., Chen, C.K., Levine, E.M., Milam, A.H., Lavail, M.M., and Marc, R.E. (2003). Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464, 1-16. doi: 10.1002/cne.10703.
    Kaneda, M., Ishii, K., Morishima, Y., Akagi, T., Yamazaki, Y., Nakanishi, S., and Hashikawa, T. (2004). OFF-cholinergic-pathway-selective localization of P2X2 purinoceptors in the mouse retina. J Comp Neurol 476, 103-111. doi: 10.1002/cne.20208.
    Kerschensteiner, D., Morgan, J.L., Parker, E.D., Lewis, R.M., and Wong, R.O. (2009). Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature 460, 1016-1020. doi: 10.1038/nature08236.
    Kihara, A.H., De Castro, L.M., Moriscot, A.S., and Hamassaki, D.E. (2006a). Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 83, 1331-1341. doi: 10.1002/jnr.20815.
    Kihara, A.H., Mantovani De Castro, L., Belmonte, M.A., Yan, C.Y., Moriscot, A.S., and Hamassaki, D.E. (2006b). Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. J Neurobiol 66, 1397-1410. doi: 10.1002/neu.20299.
    Kihara, A.H., Paschon, V., Cardoso, C.M., Higa, G.S., Castro, L.M., Hamassaki, D.E., and Britto, L.R. (2009). Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol 512, 651-663. doi: 10.1002/cne.21920.
    Kothmann, W.W., Li, X., Burr, G.S., and O'brien, J. (2007). Connexin 35/36 is phosphorylated at regulatory sites in the retina. Vis Neurosci 24, 363-375. doi: 10.1017/S095252380707037X.
    Kothmann, W.W., Massey, S.C., and O'brien, J. (2009). Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J Neurosci 29, 14903-14911. doi: 10.1523/JNEUROSCI.3436-09.2009.
    Kothmann, W.W., Trexler, E.B., Whitaker, C.M., Li, W., Massey, S.C., and O'brien, J. (2012). Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32, 6747-6759. doi: 10.1523/JNEUROSCI.5087-11.2012.
    Kovacs-Oller, T., Raics, K., Orban, J., Nyitrai, M., and Volgyi, B. (2014). Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 358, 289-302. doi: 10.1007/s00441-014-1967-9.
    Levay, S., Wiesel, T.N., and Hubel, D.H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191, 1-51. doi: 10.1002/cne.901910102.
    Li, W., Keung, J.W., and Massey, S.C. (2004). Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. J Comp Neurol 474, 1-12. doi: 10.1002/cne.20075.
    Ma, Y.P., and Pan, Z.H. (2003). Spontaneous regenerative activity in mammalian retinal bipolar cells: roles of multiple subtypes of voltage-dependent Ca2+ channels. Vis Neurosci 20, 131-139.
    Macneil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E., and Masland, R.H. (1999). The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413, 305-326.
    Macneil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E., and Masland, R.H. (2004). The population of bipolar cells in the rabbit retina. J Comp Neurol 472, 73-86. doi: 10.1002/cne.20063.
    Macneil, M.A., and Masland, R.H. (1998). Extreme diversity among amacrine cells: implications for function. Neuron 20, 971-982.
    Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., Lein, E.S., and Zeng, H. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13, 133-140. doi: 10.1038/nn.2467.
    Manookin, M.B., Beaudoin, D.L., Ernst, Z.R., Flagel, L.J., and Demb, J.B. (2008). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28, 4136-4150. doi: 10.1523/JNEUROSCI.4274-07.2008.
    Margolis, D.J., and Detwiler, P.B. (2011). Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol 2011. doi: 10.1155/2011/507037.
    Margolis, D.J., Gartland, A.J., Singer, J.H., and Detwiler, P.B. (2014). Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One 9, e86253. doi: 10.1371/journal.pone.0086253.
    Margolis, D.J., Newkirk, G., Euler, T., and Detwiler, P.B. (2008). Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci 28, 6526-6536. doi: 10.1523/JNEUROSCI.1533-08.2008.
    Masland, R.H. (1977). Maturation of function in the developing rabbit retina. J Comp Neurol 175, 275-286. doi: 10.1002/cne.901750303.
    Masland, R.H. (2001). The fundamental plan of the retina. Nat Neurosci 4, 877-886. doi: 10.1038/nn0901-877.
    Masland, R.H. (2005). The many roles of starburst amacrine cells. Trends Neurosci 28, 395-396. doi: 10.1016/j.tins.2005.06.002.
    Masland, R.H. (2011). Cell populations of the retina: the Proctor lecture. Invest Ophthalmol Vis Sci 52, 4581-4591. doi: 10.1167/iovs.10-7083.
    Masland, R.H. (2012a). The neuronal organization of the retina. Neuron 76, 266-280. doi: 10.1016/j.neuron.2012.10.002.
    Masland, R.H. (2012b). The tasks of amacrine cells. Vis Neurosci 29, 3-9.
    Massey, S.C., and Mills, S.L. (1999). Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J Comp Neurol 411, 3-18.
    Mataruga, A., Kremmer, E., and Muller, F. (2007). Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. J Comp Neurol 502, 1123-1137. doi: 10.1002/cne.21367.
    Mazzoni, F., Novelli, E., and Strettoi, E. (2008). Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28, 14282-14292. doi: 10.1523/JNEUROSCI.4968-08.2008.
    Mclaughlin, T., Torborg, C.L., Feller, M.B., and O'leary, D.D. (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147-1160.
    Menzler, J., and Zeck, G. (2011). Network oscillations in rod-degenerated mouse retinas. J Neurosci 31, 2280-2291. doi: 10.1523/JNEUROSCI.4238-10.2011.
    Mills, S.L. (1999). Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci 16, 1029-1035.
    Mills, S.L., O'brien, J.J., Li, W., O'brien, J., and Massey, S.C. (2001). Rod pathways in the mammalian retina use connexin 36. J Comp Neurol 436, 336-350.
    Mitchell, C.K., Rowe-Rendleman, C.L., Ashraf, S., and Redburn, D.A. (1995). Calbindin immunoreactivity of horizontal cells in the developing rabbit retina. Exp Eye Res 61, 691-698.
    Munch, T.A., Da Silveira, R.A., Siegert, S., Viney, T.J., Awatramani, G.B., and Roska, B. (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12, 1308-1316. doi: 10.1038/nn.2389.
    Nawy, S., and Jahr, C.E. (1991). cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 7, 677-683.
    Nelson, R., and Kolb, H. (1985). A17: a broad-field amacrine cell in the rod system of the cat retina. J Neurophysiol 54, 592-614.
    O'malley, D.M., Sandell, J.H., and Masland, R.H. (1992). Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 12, 1394-1408.
    Osborne, N.N., Patel, S., and Vigny, A. (1984). Dopaminergic neurones in various retinas and the postnatal development of tyrosine-hydroxylase immunoreactivity in the rabbit retina. Histochemistry 80, 389-393.
    Pang, J.J., Frankfort, B.J., Gross, R.L., and Wu, S.M. (2015). Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proc Natl Acad Sci U S A 112, 2593-2598. doi: 10.1073/pnas.1419921112.
    Park, W.M., Wang, Y., Park, S., Denisova, J.V., Fontes, J.D., and Belousov, A.B. (2011). Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses. J Neurosci 31, 5909-5920. doi: 10.1523/JNEUROSCI.6787-10.2011.
    Petit-Jacques, J., and Bloomfield, S.A. (2008). Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 100, 993-1006. doi: 10.1152/jn.01399.2007.
    Petit-Jacques, J., Volgyi, B., Rudy, B., and Bloomfield, S. (2005). Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J Neurophysiol 94, 1770-1780. doi: 10.1152/jn.00279.2005.
    Pfeiffer-Linn, C.L., and Lasater, E.M. (1996). Dopamine modulates unitary conductance of single PL-type calcium channels in Roccus chrysops retinal horizontal cells. J Physiol 496 ( Pt 3), 607-616.
    Pignatelli, V., and Strettoi, E. (2004). Bipolar cells of the mouse retina: a gene gun, morphological study. J Comp Neurol 476, 254-266. doi: 10.1002/cne.20207.
    Pittler, S.J., and Baehr, W. (1991). Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88, 8322-8326.
    Popova, E. (2014). Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200, 333-358. doi: 10.1007/s00359-014-0906-2.
    Poria, D., and Dhingra, N.K. (2015). Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse. J Neurophysiol 113, 420-425. doi: 10.1152/jn.00702.2014.
    Razak, K.A., and Pallas, S.L. (2006). Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons. Vis Neurosci 23, 741-748. doi: 10.1017/S0952523806230062.
    Reuter, J.H., Legein, C.P., Van Der Mark, F., and Van Hof, M.W. (1971). The electroretinogram in normal and light-deprived rabbits. Doc Ophthalmol 30, 349-361.
    Rivlin-Etzion, M., Zhou, K., Wei, W., Elstrott, J., Nguyen, P.L., Barres, B.A., Huberman, A.D., and Feller, M.B. (2011). Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J Neurosci 31, 8760-8769. doi: 10.1523/JNEUROSCI.0564-11.2011.
    Rossi, J., Balthasar, N., Olson, D., Scott, M., Berglund, E., Lee, C.E., Choi, M.J., Lauzon, D., Lowell, B.B., and Elmquist, J.K. (2011). Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 13, 195-204. doi: 10.1016/j.cmet.2011.01.010.
    Sanes, J.R., and Masland, R.H. (2015). The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 38, 221-246. doi: 10.1146/annurev-neuro-071714-034120.
    Sauve, Y., Girman, S.V., Wang, S., Lawrence, J.M., and Lund, R.D. (2001). Progressive visual sensitivity loss in the Royal College of Surgeons rat: perimetric study in the superior colliculus. Neuroscience 103, 51-63.
    Schmidt, M., Humphrey, M.F., and Wassle, H. (1987). Action and localization of acetylcholine in the cat retina. J Neurophysiol 58, 997-1015.
    Schubert, T., Maxeiner, S., Kruger, O., Willecke, K., and Weiler, R. (2005). Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol 490, 29-39. doi: 10.1002/cne.20621.
    Sharpe, L.T., and Stockman, A. (1999). Rod pathways: the importance of seeing nothing. Trends Neurosci 22, 497-504.
    Singer, J.H., and Diamond, J.S. (2003). Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J Neurosci 23, 10923-10933.
    Soucy, E., Wang, Y., Nirenberg, S., Nathans, J., and Meister, M. (1998). A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481-493.
    Stasheff, S.F. (2008). Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 99, 1408-1421. doi: 10.1152/jn.00144.2007.
    Strettoi, E., Dacheux, R.F., and Raviola, E. (1994). Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol 347, 139-149. doi: 10.1002/cne.903470111.
    Strettoi, E., Raviola, E., and Dacheux, R.F. (1992). Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325, 152-168. doi: 10.1002/cne.903250203.
    Sun, L.O., Jiang, Z., Rivlin-Etzion, M., Hand, R., Brady, C.M., Matsuoka, R.L., Yau, K.W., Feller, M.B., and Kolodkin, A.L. (2013). On and off retinal circuit assembly by divergent molecular mechanisms. Science 342, 1241974. doi: 10.1126/science.1241974.
    Syed, M.M., Lee, S., Zheng, J., and Zhou, Z.J. (2004). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 560, 533-549. doi: 10.1113/jphysiol.2004.066597.
    Taylor, W.R., and Smith, R.G. (2012). The role of starburst amacrine cells in visual signal processing. Vis Neurosci 29, 73-81. doi: 10.1017/S0952523811000393.
    Tian, N. (2011). Developmental mechanisms that regulate retinal ganglion cell dendritic morphology. Dev Neurobiol 71, 1297-1309. doi: 10.1002/dneu.20900.
    Trenholm, S., Borowska, J., Zhang, J., Hoggarth, A., Johnson, K., Barnes, S., Lewis, T.J., and Awatramani, G.B. (2012). Intrinsic oscillatory activity arising within the electrically coupled AII amacrine-ON cone bipolar cell network is driven by voltage-gated Na+ channels. J Physiol 590, 2501-2517. doi: 10.1113/jphysiol.2011.225060.
    Trenholm, S., Johnson, K., Li, X., Smith, R.G., and Awatramani, G.B. (2011). Parallel mechanisms encode direction in the retina. Neuron 71, 683-694. doi: 10.1016/j.neuron.2011.06.020.
    Trexler, E.B., Li, W., and Massey, S.C. (2005). Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. J Neurophysiol 93, 1476-1485. doi: 10.1152/jn.00597.2004.
    Tsukamoto, Y., Morigiwa, K., Ueda, M., and Sterling, P. (2001). Microcircuits for night vision in mouse retina. J Neurosci 21, 8616-8623.
    Tu, H.Y., Bang, A., Mcquiston, A.R., Chiao, C.C., and Chen, C.K. (2014). Increased dendritic branching in direction selective retinal ganglion cells in nob1 mice. Invest Ophthalmol Vis Sci 55, ARVO E-Abstract 712.
    Tu, H.Y., Chen, Y.J., Chiao, C.C., Mcquiston, A.R., and Chen, C.K.J. (2015a). Rhythmic membrane potential fluctuations of cholinergic amacrine cells in mice lacking ERG b-waves. Invest Ophthalmol Vis Sci 56, ARVO E-Abstract 3227.
    Tu, H.Y., Chen, Y.J., Mcquiston, A.R., Chiao, C.C., and Chen, C.K. (2015b). A novel retinal oscillation mechanism in an autosomal dominant photoreceptor degeneration mouse model. Front Cell Neurosci 9. doi: 10.3389/fncel.2015.00513.
    Tu, H.Y., and Chiao, C.C. (2015). Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina. Dev Neurobiol. doi: 10.1002/dneu.22320.
    Urschel, S., Hoher, T., Schubert, T., Alev, C., Sohl, G., Worsdorfer, P., Asahara, T., Dermietzel, R., Weiler, R., and Willecke, K. (2006). Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 281, 33163-33171. doi: 10.1074/jbc.M606396200.
    Vaney, D.I. (1986). Morphological identification of serotonin-accumulating neurons in the living retina. Science 233, 444-446.
    Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208. doi: 10.1038/nrn3165.
    Veruki, M.L., Morkve, S.H., and Hartveit, E. (2003). Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J Physiol 549, 759-774. doi: 10.1113/jphysiol.2003.039982.
    Volgyi, B., Chheda, S., and Bloomfield, S.A. (2009). Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512, 664-687. doi: 10.1002/cne.21912.
    Volgyi, B., Pollak, E., Buzas, P., and Gabriel, R. (1997). Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763, 79-86.
    Wassle, H. (2004). Parallel processing in the mammalian retina. Nat Rev Neurosci 5, 747-757. doi: 10.1038/nrn1497.
    Wei, W., and Feller, M.B. (2011). Organization and development of direction-selective circuits in the retina. Trends Neurosci 34, 638-645. doi: 10.1016/j.tins.2011.08.002.
    Witkovsky, P. (2004). Dopamine and retinal function. Doc Ophthalmol 108, 17-40.
    Wu, C., Ivanova, E., Cui, J., Lu, Q., and Pan, Z.H. (2011). Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell. J Neurosci 31, 14654-14659. doi: 10.1523/JNEUROSCI.1861-11.2011.
    Wu, M.L., and Chiao, C.C. (2007). Light deprivation delays morphological differentiation of bipolar cells in the rabbit retina. Brain Res 1170, 13-19. doi: 10.1016/j.brainres.2007.06.091.
    Wu, S.M., and Maple, B.R. (1998). Amino acid neurotransmitters in the retina: a functional overview. Vision Res 38, 1371-1384.
    Xin, D., and Bloomfield, S.A. (1999). Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci 16, 653-665.
    Xu, Z., Zeng, Q., Shi, X., and He, S. (2013). Changing coupling pattern of The ON-OFF direction-selective ganglion cells in early postnatal mouse retina. Neuroscience 250, 798-808. doi: 10.1016/j.neuroscience.2013.06.013.
    Ye, J.H., and Goo, Y.S. (2007). The slow wave component of retinal activity in rd/rd mice recorded with a multi-electrode array. Physiol Meas 28, 1079-1088. doi: 10.1088/0967-3334/28/9/009.
    Yee, C.W., Toychiev, A.H., Ivanova, E., and Sagdullaev, B.T. (2014). Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration. J Comp Neurol 522, 4085-4099. doi: 10.1002/cne.23660.
    Yee, C.W., Toychiev, A.H., and Sagdullaev, B.T. (2012). Network deficiency exacerbates impairment in a mouse model of retinal degeneration. Front Syst Neurosci 6, 8. doi: 10.3389/fnsys.2012.00008.
    Zhang, J., Yang, Z., and Wu, S.M. (2005). Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. J Comp Neurol 484, 331-343. doi: 10.1002/cne.20470.
    Zheng, J., Lee, S., and Zhou, Z.J. (2006). A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nat Neurosci 9, 363-371. doi: 10.1038/nn1644.
    Zhou, C., and Dacheux, R.F. (2004). All amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents. Vis Neurosci 21, 181-188.
    Zhou, Z.J. (1998). Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J Neurosci 18, 4155-4165.
    Zhou, Z.J., and Zhao, D. (2000). Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J Neurosci 20, 6570-6577.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE