研究生: |
陳伯瑋 Chen, Bo-Wei |
---|---|
論文名稱: |
多晶矽太陽能電池之研究:利用雷射開孔法製作含氧化矽/氧化鋁鈍化層的局部背面接觸 Study of Multicrystalline Silicon Solar Cells:Local Rear Contact with SiO2/Al2O3 Passivation Layer by Laser Ablation Method |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
陳昇暉
張正陽 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 氧化鋁 、表面鈍化 、矽晶太陽能電池 、局部背接觸 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究分文三部分,「改善氧化鋁起泡現象」、「局部背接觸電極之多晶矽太陽能電池製作」、「氧化矽/氧化鋁薄膜分析」。
ALD沉積氧化鋁薄膜經過溫度處理後,例如PECVD沉積氧化矽,會有起泡(Blistering)現象產生。本研究首要目的是改善起泡現象,在室溫下將矽晶片浸泡在濃硝酸溶液(69-wt%)生長氧化矽層,使晶片表面產生親水性,再用ALD沉積氧化鋁在具有親水性表面的矽基板上並進行退火處理,隨後用PECVD沉積氮化矽,再經由光學顯微鏡觀察,結果發現起泡面積由12.5%改善至0.7%及0%。
局部背接觸電極之多晶矽太陽能電池是以氧化矽/氧化鋁薄膜作為背面鈍化層,使用雷射在背面作局部線狀開孔,以網印方式印刷金屬電極,再經由產線上的燒結爐燒結形成局部背表面場,元件平均轉換效率17.39%,比較參考片下降0.05%,但是平均短路電流提升0.04安培,波長750nm~1100nm的外部量子效率有明顯提升。
XPS量測的鋁原子2p軌域訊號顯示退火後鈍化層內的鋁原子空缺數量上升,表示鋁原子空缺造成負電荷密度上升,提升場效鈍化效果。
[1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, p. 676, 1954.
[2] Shockley, William, and Hans J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells.," Journal of applied physics, vol. 32, no. 3, pp. 501-519, 1961.
[3] Jianhua Zhao, Aihua Wang, and Martin A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar energy materials and solar cells, vol. 65, no. 1, pp. 429-435, 2001.
[4] Kyeong-Yeon Cho, II-Hwan Kim, Dong-Joon Oh, "Improvements of Voc by selective emitter pattern optimization in screen printed crystalline Si solar cells," in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 1335-1338.
[5] Makoto Tanaka, Mikio Taguchi, Takao Matsuyama, Toru Sawada, Shinya Tsuda, Shoichi Nakano, Hiroshi Hanafusa and Yukinori Kuwano, "Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)," Japanese Journal of Applied Physics, vol. 31, pp. 3518-3522, Nov. 1992.
[6] Yasufumi Tsunomura , Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama, Makoto Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, no. 6, pp. 670-673, June 2009.
[7] Takahiro Mishima , Mikio Taguchi, Hitoshi Sakata, Eiji Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 18-21, Jan. 2011.
[8] Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96-99, Jan. 2014.
[9] Christiana B. Honsberg, Jeffrey E. Cotter, Keith R. McIntosh, Stephen C. Pritchard, Bryce S. Richards, and Stuart R. Wenham, "Design strategies for commercial solar cells using the buried contact technology," IEEE Transactions on Electron Devices, vol. 46, no. 10, pp. 1984-1992, Oct. 1999.
[10] Michelle McCann, Bernd Raabe, Wolfgang Jooss, Radovan Kopecek and Peter Fath, "18.1% efficiency for a large area, multi-crystalline silicon solar cell," 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 1, pp. 894-899, 2006.
[11] Giuseppe Galbiati, Valentin D. Mihailetchi, Razvan Roescu, Andreas Halm, Lejo J. Koduvelikulathu, Radovan Kopecek, Kristian Peter, and Joris Libal, "Large-area back-contact back-junction solar cell with efficiency exceeding 21%," IEEE Journal of Photovoltaics, vol. 3, no. 1, pp. 560-565, Jan. 2013.
[12] Chun Gong, Sukhvinder Singh, Jo Robbelein, Niels Posthuma, Emmanuel Van Kerschaver, Jef Poortmans and Robert Mertens, "High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study," Progress in Photovoltaics: Research and Applications, vol. 19, no. 7, pp. 781-786, Nov. 2011.
[13] Chun Gong, Emmanuel Van Kerschaver, Jo Robbelein, Tom Janssens, Niels Posthuma, Jef Poortmans, and Robert Mertens, "Screen-Printed Aluminum-Alloyed P+ Emitter on High-Efficiency N-Type Interdigitated Back-Contact Silicon Solar Cells," IEEE Electron Device Letters, vol. 31, no. 6, pp. 576-578, June 2010.
[14] Youngmoon Choi, Deok-kee Kim , Eun Cheol Do, Dongkyun Kim, Jinsoo Mun, Jin Wook Lee, Yeonil Lee, Yun Gi Kim, "Interdigitated front contact crystalline silicon solar cell," Solar Energy, vol. 100, pp. 94-101, Feb. 2014.
[15] Jung M. Kim and Young K. Kim, "Saw-damage-induced structural defects on the surface of silicon crystals," Journal of the Electrochemical Society, vol. 152, no. 3, pp. G189-G192, 2005.
[16] Yuang-Tung Cheng, Jyh-Jier Ho, William Lee, Song-Yeu Tsai, Liang-Yi Chen, Jia-Jhe Liou, Shun-Hsyung Chang, Huajun Shen, and Kang L. Wang, "Efficiency Improved by H2 Forming Gas Treatment for Si-Based Solar Cell Applications," International Journal of Photoenergy, vol. 2010, pp. 1-6, 2010.
[17] Oliver Schultz, Ansgar Mette, Martin Hermle and Stefan W. Glunz, "Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology," Progress in Photovoltaics: Research and Applications, vol. 16, no. 4, pp. 317-324, June 2008.
[18] B. Hoex, F. J. J. Peeters, M. Creatore, M. A. Blauw, W. M. M. Kessels, and M. C. M. van de Sanden, "High-rate plasma-deposited Si O 2 films for surface passivation of crystalline silicon," Journal of Vacuum Science & Technology A, vol. 24, no. 5, p. 1823, 2006.
[19] Wim Soppe, Henk Rieffe and Arthur Weeber, "Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD," Progress in Photovoltaics: Research and Applications, vol. 13, no. 7, pp. 551-569, Nov. 2005.
[20] A. El amrani, I. Menous, L. Mahiou, R. Tadjine, A. Touati, A. Lefgoum, "Silicon nitride film for solar cells," Renewable Energy, vol. 33, no. 10, pp. 2289-2293, Oct. 2008.
[21] Sangho Kim, Vinh Ai Dao, Youngseok Lee, Chonghoon Shin, Jinjoo Park, Jaehyun Cho, Junsin Yi, "Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 117, pp. 174-177, Oct. 2013.
[22] Hua Li, Stuart Ross Wenham, Zhengrong Shi, "High efficiency PERL cells on CZ P-type crystalline silicon using a thermally stable a-Si:H/SiNx rear surface passivation stack," Solar Energy Materials and Solar Cells, vol. 117, pp. 41-47, Oct. 2013.
[23] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, "On the c -Si surface passivation mechanism by the negative-charge-dielectric Al2O3," Journal of Applied Physics, vol. 104, no. 11, p. 113703, Dec. 2008.
[24] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, "Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3," Applied Physics Letters, vol. 89, no. 4, p. 042112, 2006.
[25] J. Zhao and Martin A. Green , "Optimized antireflection coatings for high-efficiency silicon solar cells," IEEE Transactions on Electron Devices, vol. 38, no. 8, pp. 1925-1934, Aug. 1991.
[26] Sebastian Gatz, Helge Hannebauer, Rene Hesse, Florian Werner, Arne Schmidt, Thorsten Dullweber, Jan Schmidt, Karsten Bothe and Rolf Brendel, "19.4%-efficient large-area fully screen-printed silicon solar cells," physica status solidi (RRL) - Rapid Research Letters, vol. 5, no. 4, pp. 147-149, Apr. 2011.
[27] Bart Vermang, Hans Goverde, Loic Tous, Anne Lorenz, Patrick Choulat, Jorg Horzel, Joachim John, Jef Poortmans andRobert Mertens, "Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%," Progress in Photovoltaics: Research and Applications, vol. 20, no. 3, pp. 269-273, May 2012.
[28] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, "Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge," Solar Energy Materials and Solar Cells, vol. 90, no. 18, pp. 3438-3443, Nov. 2006.
[29] Pierre Saint-Cast, Daniel Kania, Marc Hofmann, Jan Benick, Jochen Rentsch, and Ralf Preu, "Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide," Applied Physics Letters, vol. 95, no. 15, p. 151502, 2009.
[30] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, "Silicon surface passivation by atomic layer deposited Al2O3," Journal of Applied Physics, vol. 104, no. 4, p. 044903, Aug. 2008.
[31] Donald A. Neamen, Semiconductor physics and devices : basic principles, 3rd ed.: McGraw-Hill, 2003.
[32] Riikka L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," Journal of Applied Physics, vol. 97, no. 12, p. 121301, June 2005.
[33] Sanjukta Guhathakurta and Anuradha Subramanian, "Effect of hydrofluoric acid in oxidizing acid mixtures on the hydroxylation of silicon surface," Journal of The Electrochemical Society, vol. 154, no. 11, pp. 136-146, 2007.
[34] Jia Chen, Zhi Hao Joseph Tey, Zhe Ren Du, Fen Lin, Bram Hoex, and Armin G. Aberle, "Investigation of screen-printed rear contacts for aluminum local back surface field silicon wafer solar cells," IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 690-696, Apr. 2013.
[35] B. Vermang, H. Goverde, A. Lorenz, A. Uruena, G. Vereecke, J. Meersschaut, "On the blistering of atomic layer deposited Al2O3 as Si surface passivation," Photovoltaic Specialists Conference (PVSC), 37th IEEE, pp. 003562-003567, 2011.
[36] B. Vermang , H.Goverde , A.Uruena , A.Lorenz , E.Cornagliotti , A.Rothschild , J.John, "Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells," Solar Energy Materials and Solar Cells, vol. 101, pp. 204-209, June 2012.
[37] Bart Vermang, Aude Rothschild, Karine Kenis, Kurt Wostyn, Twan Bearda, A. Racz, X. Loozen, Joachim John, Paul W. Mertens, Jef Poortmans, Robert P. Mertens, "Surface passivation for Si solar cells: a combination of advanced surface cleaning and thermal atomic layer deposition of Al2O3," Solid State Phenomena, vol. 187, pp. 357-361, Apr. 2012.
[38] Yeng-Cheng Hu, Ming-Hui Chiu, Likarn Wang, "Efficiency improvement of silicon solar cells by nitric acid oxidization," Japanese journal of applied physics, vol. 49, no. 2R, p. 022301, Feb. 2010.