簡易檢索 / 詳目顯示

研究生: 林郁博
LIN, YU-BO
論文名稱: 使用氧化鈦鋯與氧化鈦鑭高介電常數堆疊介電層於金屬-絕緣層-金屬電容之研究
Investigation of High-Performance Metal-Insulator-Metal Capacitor Using ZrTiOx/ZrLaOx Stacked Dielectrics
指導教授: 巫勇賢
口試委員: 吳永俊
高瑄苓
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: ZrLaOZrTiOMIMhigh-k
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中我們探討以ZrLaOx/ZrTiOx/ZrLaOx堆疊介電層作為金屬-絕緣層-金屬(Metal-Insulator-Metal, MIM)電容的介電層。我們發現以單層的ZrTiOx介電層的MIM電容具有負的非線性電壓電容係數,其介電常數高達22.5。而單層的ZrTiOx介電層MIM電容具有正的非線性電壓電容係數和高介電常數25.8。藉由整合ZrLaOx與ZrTiOx兩種金屬氧化物作為MIM電容的介電層,我們實現非線性電壓電容係數的"抵消效應"並且得到高電容密度的成果。以ZrLaOx/ZrTiOx/ZrLaOx堆疊結構的MIM電容可以得到高電容密度14.6 fF/μm2和很小的非線性電壓電容係數33 ppm/V2,並且在頻散現象、溫度穩定性、可靠度方面和不錯的漏電流密度(在-1V時2.5×10-7 A/cm2 ),根據以上結果顯示,ZrLaOx/ZrTiOx/ZrLaOx堆疊介電層應用於下一是世代的高性能MIM電容是具有很大的潛力。


    Metal-insulator-metal (MIM) capacitors with ZrLaOx/ZrTiOx/ZrLaOx laminate as the insulator were explored in this work. Single ZrTiOx dielectric was found to have a negative quadratic voltage coefficient of capacitance (VCC-α) with a high-κ value of 22.5. By integrating this dielectric with ZrLaOx which provides a positive VCC-α and a high κ value of 25.8, the “canceling effect” of VCC-α can be achieved while a high capacitance density can be maintained. MIM capacitors with the laminate structure display desirable characteristics in terms of a capacitance density of 14.6 fF/μm2, a low VCC-α of 33 ppm/V2, negligible frequency dispersion and satisfactory leakage current of 2.5×10-7 A/cm2 at -1 V. These results show that the ZrLaOx/ZrTiOx/ZrLaOx laminate holds the great potential to be applied to next-generation high-performance MIM capacitors.

    總目錄 摘要.............................................................................................................................................i致謝..........................................................................................................................................iii總目錄.......................................................................................................................................iv表目錄.......................................................................................................................................vi圖目錄.....................................................................................................................................vii 第一章 序論..............................................................................................................................1 1-1 背景介紹............................................................................................................1 1-2 MIM電容的結構與特性..................................................................................2 1-3 MIM電容的應用...............................................................................................3 1-4 研究動機............................................................................................................4 1-5 論文結構............................................................................................................5 第二章 文獻回顧....................................................................................................................10 2-1 高介電常數材料的發展..................................................................................10 2-2 介電層厚度與電壓電容係數的相關性..........................................................11 2-3 以SiO2與high-κ材料為MIM電容的介電層................................................12 2-4 以high-κ材料為MIM電容的介電層.............................................................12 第三章 實驗流程..................................................................................................................17 3-1 實驗規劃..........................................................................................................17 3-2 TaN/ZrTiOx/TaN電容製程.............................................................................17 3-3 TaN/ZrLaOx/ZrTiOx/ZrLaOx/TaN電容製程...................................................18 3-4 電容電性分析..................................................................................................19 第四章 實驗結果與討論......................................................................................................25 4-1 MIM電容的重要物理參數與物理現象.........................................................25 4-1-1 MIM電容的電壓電容係數.............................................................25 4-1-2 MIM電容的抵消效應.....................................................................28 4-2 單層ZrTiOx介電層的MIM電容的電性分析................................................28 4-3 ZrTiOx/ZrTiOx/ZrTiOx薄膜物理特性分析.....................................................30 4-3-1 高解析電子能譜儀..........................................................................30 4-3-2 X射線繞射分析(X-ray Diffraction)................................................30 4-3-3 原子力顯微鏡分析(AFM)..............................................................31 4-4 ZrLaOx/ZrTiOx/ZrLaOxMIM電容的電性分析...............................................32 4-4-1 MIM電容的電容特性.....................................................................32 4-4-2 MIM電容的漏電流特性.................................................................33 4-4-3 漏電機制的模擬分析......................................................................34 4-4-4 MIM電容的頻散現象和電容溫度係數分析.................................36 第五章 結論..........................................................................................................................53 參考文獻..................................................................................................................................55 圖目錄 第一章........................................................................................................................................1 圖1-1 各種不同堆疊結構的MIM電容(a)薄片式(b)堆疊式(c)三明治式.................8圖1-2 包含MIM電容的DRAM 結構剖面圖............................................................9圖1-3 包含MIM電容的數位-類比混合訊號電路的截面圖.............................9 第二章......................................................................................................................................10 圖2-1 各種介電材料之能帶寬度..............................................................................14 圖2-2 能帶寬度對介電常數比較圖..........................................................................14 圖2-3 介電層厚度與電壓電容係數關係圖..............................................................15 圖2-4 MIM電容的normalized C-V圖(a)HfO2 MIM電容(b)SiO2 MIM電容.........16 第三章......................................................................................................................................17 圖3-1 TaN/ZrTiOx/TaN電容製程步驟圖.................................................................21 圖3-2 TaN/ZrLaOx/ZrTiOx/ZrLaOx/TaN電容製程步驟圖........................................24 第四章......................................................................................................................................25 圖4-1 類比轉數位電路的輸出對輸入圖,圖中包含了理想的輸出對輸入曲線和受 非線性電壓係數影響的曲線..........................................................................39 圖4-2 MIM電容的normalized C-V圖 (a)具有負α值的MIM電容(b)具有正α值 的MIM電容....................................................................................................40 圖4-3 HfO2/SiO2堆疊介電層MIM電容的α值相消示意圖.................................41 圖4-4 有無熱處理的ZrTiOx MIM電容的normalized C-V圖.................................42 圖4-5 有無熱處理的ZrTiOx MIM電容的C-V圖....................................................42 圖4-6 不同厚度ZrTiOx MIM電容的normalized C-V圖.........................................43 圖4-7 ZrTiOx MIM電容的XPS分析........................................................................44 圖4-8 對不同薄膜的XRD分析................................................................................44 圖4-9 AFM分析(a)剛沉積的ZrLaOx/ZrTiOx/ZrLaOx薄膜(b)熱處理後的 ZrLaOx/ZrTiOx/ZrLaOx薄膜...........................................................................45 圖4-10不同介電層的MIM電容的C-V圖................................................................46 圖4-11不同介電層的MIM電容的normalized C-V圖.............................................47 圖4-12模擬的α值對電容密度圖..............................................................................47 圖4-13不同介電層的MIM電容的漏電流密度對電壓圖........................................48 圖4-14 MIM電容的能帶比較圖(a)ZrTiOx MIM電容(b) ZrLaOx/ ZrTiOx/ ZrLaOx MIM電容.......................................................................................................49 圖4-15漏電機制模擬圖.............................................................................................50 圖4-16不同介電層的MIM電容的電容密度對頻率圖............................................51 圖4-17不同介電層MIM電容的normalized capacitance對溫度圖.........................51 圖4-18 ZrLaOx/ ZrTiOx/ ZrLaOx MIM電容的可靠度分析.......................................52 圖4-19各種介電層MIM電容之比較圖....................................................................52 表目錄 第一章........................................................................................................................................1 表1-1 各種高介電常數材料的基本電性....................................................................6表1-2 2011 ITRS 射頻電路上被動元件技術設計藍圖............................................7

    參考文獻
    第一章
    [1.1] “International technology roadmap for semiconductors”, ITRS, 2011 edition.
    [1.2] M. Yoshida, T. Kumauchi, K. Kawakita, N. Ohashi, H. Enomoto, T. Umezawa, N.Yamamoto, I. Asano, and Y. Tadaki, “Low temperature metal-based cell integration technology for gigabit and embedded DRAMs”, in IEEE IEDM Tech. Dig., 2007, pp. 41-44.
    [1.3] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 1997, pp. 191-194.
    [1.4] T. Yoshitomi, Y3 Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose , K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwa, “High performance MIM capacitor for RF BiCMOS/CMOS LSls”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 1999, pp. 133-136.
    [1.5] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang and A. Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits”, IEEE Interconnect Technology International Conference, 1999, pp. 245-247.
    [1.6] H.S.P. Wong, “Beyond the conventional transistor”, IBM J . Res. Develop., vol.46, 2002, pp. 133-168.
    [1.7] S. Kim, B. Cho, M. Li, S. Ding, C. Zhu, M. Yu, B. Narayanan, A. Chin, and D. Kwong, “Improvement of voltage linearity in high-κ MIM capacitors using HfO2-SiO2 stacked dielectric”, IEEE Electron Device Letters, vol.25, 2004, pp. 538-540.
    [1.8] X. Yu, C. Zhu, H. Hu, A. Chin, M. Li, B. Cho, D. Kwong, P. Foo, and M. Yu, “A high-density MIM capacitor (13 fF/μm2) using ALD HfO2 dielectrics”, IEEE Electron Device Letters, vol.24, 2003, pp. 63-65.
    [1.9] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, A. Chin, “High density and low leakage current in TiO2 MIM capacitors processed at 300 oC”, IEEE Electron Device Letters, vol.29, 2008, pp. 845-847.
    [1.10] J. J. Yang, J. D. Chen, R. Wise, P. Steinmann, M. B. Yu, D. L. Kwong, M. F. Li, Y. C. Yeo, and C. Zhu, “Effective modulation of quadratic voltage coefficient of capacitance in MIM capacitors using Sm2O3/SiO2 dielectric stack”, IEEE Electron Device Letters, vol.30, 2009, pp. 460-462.
    [1.11] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, C. Zhu, Y. C. Yeo, “Physical and electrical characterization of metal–insulator–metal capacitors with Sm2O3 and Sm2O3/SiO2 laminated dielectrics for analog circuit applications”, IEEE Electron Device Letters, vol.56, 2009, pp. 2683-2691.
    [1.12] T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, ”High-capacitance Cu/Ta2O5/Cu MIM structure for SoC applications featuring a single-mask add-on process”, in IEEE IEDM Tech. Dig., 2002, pp. 940-942.
    [1.13] S. Kim, B. Cho, M. Yu, M. Li, Y. Xiong, C. Zhu, A. Chin, and D. Kwong, ”High capacitance density (>17 fF/μm2) Nb2O5-based MIM capacitors for future RF IC applications”, in VLSI Symp. Tech. Dig., 2005, pp. 56–57.
    [1.14] D. Brassard, D. Sarkar, M. El Khakani, and L. Ouellet, “Compositional effect on the dielectric properties of high-κ titanium silicate thin films deposited by means of a cosputtering process”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.24, 2006, p. 600.
    [1.15] K. Chiang, C. Huang, A. Chin, W. Chen, S. McAlister, H. Chiu, J. Chen, and C. Chi, “High-κ Ir/TiTaO/TaN capacitors suitable for analog IC applications”, IEEE Electron Device Letters, vol.26, 2005, pp. 504-506.
    [1.16] C. Cheng, H. Pan, H. Yang, C. Hsiao, C. Chou, S. McAlister, and A. Chin, “Improved high-temperature leakage in high-density MIM capacitors by using a TiLaO dielectric and an Ir electrode,” IEEE Electron Device Letters, vol.28, 2007, pp. 1095-1097.
    [1.17] V. Mikhelashvili, G. Eisenstein, and A. Lahav, “High capacitance density metal-insulator-metal structure based on AlO–HfTiO nanolaminate stacks”, Appl. Phys. Lett., vol. 90, 2007, p. 013506.
    [1.18] C. Huang, K. Chiang, H. Kao, A. Chin, and W. Chen, “RF IC TaN/SrTiO3/TaN MIM capacitors with 35 fF/μm2 capacitance density”, IEEE Microwave and Wireless Components Letters, vol. 16, 2006, pp. 493-495.
    [1.19] K. Chiang, C. Huang, G. Chen, W. Chen, H. Kao, Y. Wu, A. Chin, and S. McAlister, ”High-performance SrTiO3 MIM capacitors for analog applications”, IEEE Transactions on Electron Devices, vol. 53, 2006, p. 2312.
    [1.20] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, “Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices”, Chemical Vapor Deposition, vol. 14, 2008.
    [1.21] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, 2003, p. 2026.
    [1.22] C. Perkins, B. Triplett, P. McIntyre, K. Saraswat, S. Haukka, and M. Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition”, Appl. Phys. Lett., vol. 78, 2001, p. 2357.
    [1.23] A. Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, and F. Lalanne, “Highly Reliable TiN/ZrO2/TiN 3D Stacked Capacitors for 45 nm Embedded DRAM Technologies”, in Solid-State Device Research Conference, 2006, pp. 343-346.
    [1.24] S. J. Kim, “High-κmetal-insulator-metal (MIM) capacitors for RF/mixed-signal IC applications”, NATIONAL UNIVERSITY OF SINGAPORE, degree of doctor, 2005.
    [1.25] T. Iida, M. Nakahara, S. Gotoh, and H. Akibah, ”Precise capacitor structure suitable for submicron mixed analog/digital ASICs”, IEEE 1990 Custom Integrated Circuits Conference, 1990, pp. 13-16.
    [1.26] Y. H. Wu, C. C. Lin, L. L. Chen, Y. C. Hu, J. R. Wu, and M. L. Wu, “High-performance metal-insulator-metal capacitor with Ge-stabilized tetragonal ZrO2/amorphous La-doped ZrO2 dielectric”, Appl. Phys. Lett., vol. 98, 2011, p. 013506.
    第二章
    [2.1] J. Rovertson, “Band structures and band offsets of high K dielectrics on Si”, Applied Surface Science, 190, 2002, pp. 2-10.
    [2.2] V. Mikhelashvil, P. Thangadurai, W. D. Kaplan, and G. Eisenstein, “High capacitance density metal-insulator-metal structures based on a high-κ HfNxOy-SiO2-HfTiOy laminate stack”, Appl. Phys. Lett., vol. 92, 2008, p. 132902.
    [2.3] Dayu Zhou, U. Schroeder, G. Jegert, M. Kerber, S. Uppal, R. Agaiby, M. Reinicke, J. Heitmann, and L. Oberbeck, “Time dependent dielectric breakdown of amorphous ZrAlxOy high-κ dielectric used in dynamic random access memory metal-insulator-metal capacitor”, Journal of Applied Physics, vol. 106, 2009, p. 044104.
    [2.4] Ch. Wenger, G. Lupina, M. Lukosius, O. Seifarth, H.-J. Müssig, S. Pasko and Ch. Lohe, “Microscopic model for the nonlinear behavior of high-κ metal-insulator-metal capacitors”, Journal of Applied Physics, vol. 103, 2008, p. 104103.
    [2.5] S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. -L. Kwong, “PVD HfO2 for high-precision MIM capacitor applications”, IEEE Electron Device Letters, vol. 24, 2003, pp. 387-389.
    [2.6] R. B. van Dover, R. M. Fleming, L. F. Schneemejrer, G. B. Alers, and D. J. Werder, “Advanced dielectrics for gate oxide, DRAM and rf capacitors”, in IEDM Tech. Dig., 1998, pp. 823–826.
    [2.7] Shi-Jin Ding, Hang Hu, Chunxiang Zhu, Sun Jung Kim, Xiongfei Yu, Ming-Fu Li, Byung Jin Cho, Daniel S. H. Chan, M. B. Yu, Subhash C. Rustagi, Albert Chin, and Dim-Lee Kwong, “RF, DC, and Reliability Characteristics of ALD HfO2–Al2O3 Laminate MIM Capacitors for Si RF IC Applications”, IEEE Transactions on Electron Devices, vol. 51, 2004, pp. 886-894.
    [2.8] C. Jorel, C. Vallée, P. Gonon, E. Gourvest, and C. Dubarry, “High Performance metal-insulator-metal capacitr using a SrTiO3/ZrO2 bilayer”, Appl. Phy. Lett., vol. 94, 2009, p. 253502.
    [2.9] Bing-Yue Tsui, Senior Member, IEEE, Hsiao-Hsuan Hsu, and Chun-Hu Cheng, “High-Performance Metal–Insulator–Metal Capacitors With HfTiO/Y2O3 Stacked Dielectric”, IEEE Electron Device Letters, vol. 31, 2010, pp. 875-877.
    第四章
    [4.1] K. S. Tan, S. Kiriaki, M. De Wit, J. W. Fattaruso, C. Y. Tsay, W. E. Matthews, and R. K. Hester, “Error Correction Techniques for High-Performance Differential A/D Converters”, IEEE J. Solid-State Circuits, vol.25, 1990, pp. 1318-1327.
    [4.2] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Letters, vol. 23, 2002, pp. 514-516.
    [4.3] J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal–insulator–metal capacitors using PECVD nitride dielectrics”, IEEE Electron Device Letters, vol. 22, 2001, pp. 230-232.
    [4.4] H. Hu, C. Zhu, Y. Lu, Y. Wu, T. Liew, M. Li, B. Cho, W. Choi, and N. Yakovlev, “Physical and electrical characterization of HfO2 metal–insulator–metal capacitors for Si analog circuit applications”, Journal of Applied Physics, vol. 94, 2003, p. 551.
    [4.5] P. Gonon and C. Valle, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors”, Appl. Phys. Lett., vol. 90, 2007, p. 142906.
    [4.6] J. Macdonald, “Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes”, Physical Review, vol. 92, 1953, pp. 4-17.
    [4.7] J. Beaumont and P. Jacobs, “Polarization in potassium chloride crystals”, J. Phys. Chem. Solids, vol. 28, 1967, pp. 657-667.
    [4.8] S. Mitoff and R. Charles, “Electrode polarization of ionic conductors”, Journal of Applied Physics, vol. 43, 1972, p. 927.
    [4.9] Sun Jung Kim, Byung Jin Cho, M.-F. Li, S.-J. Ding, M. B. Yu, Chunxiang Zhu1, Albert Chin, and D.-L. Kwong, “Engineering of Voltage Nonlinearity in High-K MIM Capacitor for Analog/Mixed-Signal ICs”, VLSI Technol., 2004, pp. 218-219.
    [4.10] P. Alexandrov, J. Koprinarova and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron”, Vacuum, vol. 47, 1996, pp. 1333-1336.
    [4.11] H. H. Hsu, C. H. Cheng, and B. Y. Tsui, “High performance metal/insulator/metal capacitors using HfTiO as dielectric”, in Proc. Int. Symp. VLSI Technol., Syst., Appl., 2009, pp. 67-68.
    [4.12] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia”, Phys. Rev. B, Condens. Matter, vol. 65, 2002, p. 075105.
    [4.13] Dominik Martin, Matthias Grube, Wenke Weinreich, Johannes Müller, Lutz Wilde, Elke Erben, Walter M. Weber, Johannes Heitmann, Uwe Schröder, Thomas Mikolajick, and Henning Riechert, “Macroscopic and microscopic electrical characterizations of high-k ZrO2 and ZrO2/Al2O3/ZrO2 metal-insulator-metal structures”, Journal of Vacuum Science & Technology B, vol. 29, 2011, p. 01AC02.
    [4.14] G. D. Wilk, R. M. Wallace, and J. M. Anthnoy, “High-κ gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, vol. 89, 2001, pp. 5243-5275.
    [4.15] G. Pabst, L. Martin, Y. Chu, and R. Ramesh, “Leakage mechanisms in BiFeO thin films”, Applied Physics Letters, vol. 90, 2007, p. 072902.
    [4.16] C. Chaneliere, J. Autran, R. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Materials Science & Engineering R, vol. 22, 1998, pp. 269-322.
    [4.17] John Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices”, J. Vac. Sci. Technol., 2000, pp. 1785-1791.
    [4.18] Jino Jun, Jin Hyung Jun, and Doo Jin Choi, “Study on the precursors for La2O3 thin films deposited on silicon substrate”, Journal of Materials Science Letters, vol. 21, 2002, pp. 1847-1849.
    [4.19] N. Negishi, K. Takeuchi, and T. Ibusuki, “Surface structure of the TiO2 thin film photocatalyst”, Journal of Materials Science Letters, vol. 33, 1998, pp.5789-5794.
    [4.20] P. Gonon and C. Vallee, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-κ metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 90,2007 , p. 142906,.
    [4.21] K. Takeda, T. Ishikawa, T. Mine, T. Imai, and T. Fujiwara, “Characterization and modeling of voltage and temperature dependence of capacitance in Al2O3-laminated Ta2O5 Metal–Insulator–Metal capacitor”, Japanese Journal of Applied Physics, vol.46, 2007, pp. 2973-2977.
    [4.22] Yung-Hsien Wu, Wei-Yuan Ou, Chia-Chun Lin, Jia-Rong Wu, Min-Lin Wu, and Lun-Lun Chen, “MIM Capacitors With Crystalline-TiO2/SiO2 Stack Featuring High Capacitance Density and Low Voltage Coefficient”, IEEE ELECTRON DEVICE LETTERS, vol. 33, 2012, pp. 104-106.
    Somnath Mondal, and Tung-Ming Pan, “High-Performance Ni/Lu2O3/TaN Metal–Insulator–Metal Capacitors”, IEEE ELECTRON DEVICE LETTERS, vol. 32, 2011, pp. 1576-1578.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE