研究生: |
朱銘億 Ming-Yi Chu |
---|---|
論文名稱: |
前瞻無線測試平台(HOY)之無線通訊界面設計 Wireless Interface Design for HOY: An Emerging Test Platform |
指導教授: |
馬席彬
Hsi-Pin Ma |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 后羿測試平台 、基頻處理器 、取樣頻率漂移 、延遲鎖定迴路 |
外文關鍵詞: | HOY, baseband processor, sampling frequency offset, delay lock loop |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統晶片測試的方式採用接觸式探針卡對待測晶片(DUT)進行量測,接觸的測試可能會對晶片本身或是輸入/輸出接點(I/O pads)造成損壞,此外隨著設計複雜度增加,測試成本也隨著提高。為了有效增加晶片測試效能以及降低晶片測試所需成本,許多前瞻的測試方法漸漸被提出。HOY前瞻測試平台提出以無線方式進行測試的構想,其將無線通訊模組嵌入待測晶片中,使測試指令與測試資料可以透過無線通道進行傳送。
本論文提出一個應用於無線通訊介面的基頻處理器,此基頻處理器具有在初始狀態控制RF電路建立自動測試機台(ATE)與待測晶片間的通道連結,以及調整傳送功率大小的功能。根據HOY計畫所自訂的通訊協定,基頻電路可以與MAC層之間順利的做資料傳送與接收。通道編碼與解碼亦能提升通訊品質,使位元錯誤率(Bit Error Rate)在RF傳送距離1公分時小於10-6。此外基頻處理器在接收資料時,同時處理取樣頻率漂移(Sampling Frequency Offset)以及同步的問題。
本論文所提出的基頻處理器已經由FPGA驗證其所具有的功能以及效能,經過邏輯分析儀測量,傳送的位元錯誤率可達到規格所需要的效能,取樣頻率漂移的問題亦可經由基頻電路處理。此外也與HOY通訊模組中的其他數位電路以及類比RF電路整合,此系統亦以FPGA板以及離散元件組成RF電路實現完成,目前已有幾組不同的雛形可提供展示。
HOY計畫已完成將無線通訊模組與HOY測試系統進行整合,整合的待測晶片以記憶體為主要設計的核心電路,無線通訊模組則包含數位電路以及類比RF電路,所完成的待測晶片本身即具有傳送射頻訊號的功能。此整合晶片已於2008年的三月下線,透過國家晶片中心(CIC)使用台積電0.18μm製程製造,晶片大小為17.3mm2,嵌入的HOY通訊模組所佔有的比例為3.64%,而本論文所提出的基頻處理器則是0.75%。
Conventional testing scheme for a chip utilizes probes or sockets between Automatic Test Equipment (ATE) and Device Under Test (DUT), which will cost a lot and damage I/O pads in wafer easily. To improve the quality of chip testing, some advanced testing technologies are discussed, such as wireless testing methodology. A wireless testing concept is proposed in HOY : an emerging test platform. By embedding a wireless communication module into DUT chip, the testing instructions and testing data can be transmitted through wireless channel.
In this thesis, a baseband processor used for wireless communication interface is presented. The proposed baseband processor provides several functions, including controlling RF to build up the wireless channel at initial and controlling transmission power gain during data communication. Channel encoding and decoding also improve the communication robustness. With the coding, BER can be less than 10^-6 for the RF distance of about 1 cm. Moreover, baseband processor deals with some sampling frequency offset problems and synchronization at the initial of receiving data.
The baseband processor has been integrated with some other digital parts and RF module. The whole system is implemented by using FPGA board and discrete component RF module. There are also some prototypes for HOY demonstration.
The latest version in HOY project is the integration of the whole communication module with HOY system. The integration includes digital circuits and analog RF module. The integration has been verified and taped-out in March, 2008. By using memory as DUT core, the overhead of HOY communication module is about 3.64% with the core area 17.3 mm2. The overhead of baseband processor is about 0.75%.
[1] C. V. Sellathmby, "Non-contactWafer Probe Using Wireless Probe Cards," in Proc. Int. Test Conf. (ITC), 2005, vol. 2, pp. 447-452.
[2] H. Eberle, A. Wander, and N. Gura, "Testing Systems Wirelessly," in Proc. VLSI Test Symp. (VTS), 2004, pp. 335-340.
[3] P. Collins, I. Reis, M. Simonen, and M. van Houcke, "A Transparent Solution for Providing Remote Wired or Wireless Communication to Board and System Level Boundary-Scan Architectures," in Proc. Int. Test Conf. (ITC), 2005, vol. 1, pp. 9-16.
[4] S. Bernard, M. Flottes, P. Cauvet, H. Fleury, and F. Verjus, "Testing System-in-package Wirelessly," in IEEE Latin American Test Workshop, Buenos Aires, Argentina, 2006, pp. 201-207.
[5] C. W. Wu, C. T. Huang, S. Y. Huang, P. C. Huang, T. Y. Chang, and Y. T. Hsing, "The HOY Tester - Can IC Testing Go Wireless ?," in IEEE Int. Symp. on VLSI Design, Automation, and Test (VLSI/DAT), Hsinchu, Apr. 2006, pp. 183-186.
[6] P. K. Chen, Y. T. Hsing, and C. W. Wu, "On Feasibility of HOY - A Wireless Test Methodology for VLSI Chips and Wafers," IEEE Int. Symp. on VLSI Design, Automation, and Test (VLSI/DAT), Hsinchu, Apr. 2006, pp. 243-246.
[7] J. J Liou, C. T. Huang, C. W. Wu, C. C. Tien, C. H. Wang, H. P. Ma, Y. Y. Chen, Y. C. Hsu, L. M. Deng, C. J. Chiu, Y. W. Li, and C. M. Chang, "A Prototype of a Wireless-based Test System," in Proc. IEEE Int. SOC Conf. (SOCC), Hsinchu, Sept. 2007.
[8] T. Y. Chang, C. T. Huang, J. J. Liou, C. W. Wu, H. P. Ma, C. C. Tien, C. H. Wang, C. U. Yang, M. Y. Chu, and L. M. Deng, "Wireless Testing of RAM Chips by HOY : Methodology, Architecture, and Prototype Implementation," in Int. Test Synthesis Workshop, Santa Barbara, CA, 2008.
[9] M. Y. Chu, T. Y. Chang, H. J. Hsu, C. Y. Lee, C. F. Li, H. P. Ma, C. T. Huang, S. Y. Huang, J. C. Bor, and P. C. Huang, "Wireless Communication Interface Design for HOY Wireless Testing Scheme," in Int. Test Synthesis Workshop, Santa Barbara, CA, 2008.
[10] P. W. Liao, "Evaluation of Advanced Low Power Design Techniques," M.S. thesis, Dept. Elect. Eng., Nat. Tsing-Hua Univ., Hsin-Chu, Taiwan, 2007.
[11] C. M. Chang, "Design and Implementation of a Baseband Transceiver for HOY Wireless Test Platform," M.S. thesis, Dept. Elect. Eng., Nat. Tsing-Hua Univ., Hsin-Chu, Taiwan, 2007.
[12] R. H. Barker, "Group Synchronization of Binary Digital Systems," in Communication Theory, London, England: W. Jackson, 1953.
[13] Y. C. Hsu, "Design and Implementation of the Wireless Test Protocol and Interface," M.S. thesis, Dept. Comput. Sci., Nat. Tsing-Hua Univ., Hsin-Chu, Taiwan, 2007.
[14] Datasheet for SL1461SA [online]. Available:
www.datasheetcatalog.org/datasheet/zarlinksemiconductor/zarlink SL1461 SEP 99.pdf
[15] A. J. Viterbi, "Error Bounds for Convolution Codes and an Asymptotically Optimum Decoding Algorithm," in IEEE Trans. Inform. Theory, vol. IT-13, no.2, pp. 260-269, 1967.
[16] J. G. Baek, S. H. Yoon, and J. W. Chong, "Memory Efficient Pipelined Viterbi Decoder with Look-ahead Trace Back," in Proc. IEEE Int. Conf. on Electron., Circuits, and Syst., 2001, vol. 2, pp. 769-772.
[17] J. G. Proakis, "Digital Communications", 4th Ed., McGraw Hill, 2000.
[18] T.A.K. Opperman, L. Staphorst, and S. Sinha, "A Hardware Implementation of an Adaptive Channel Coding System," in IEEE AFRICON Conf., Sept. 2007.
[19] I. Vilovic and B. Zovko-Cihlar, "Performance of the Bluetooth-based WPAN for Multimedia Communication," in Proc. 4th EURASIP Conf. focused on Video/Image Proc. and Multimedia Commun., 2003, vol. 2, pp.783-788.
[20] M. Hamalainen and J. Iinatti, "Analysis of Interference on DS-UWB System in AWGN Channel," in IEEE Int. Conf. on Ultra-Wideband, 2005, pp.719-723.
[21] M. Alnuaimi, K. Shuaib, and I. Jawhar, "Performance Evaluation of IEEE 802.15.4 Physical Layer Using MatLab/Simulink," in Innovations in Information Technol-
ogy, 2006, pp.1-5.