簡易檢索 / 詳目顯示

研究生: 蔡禾庭
Tsai, Ho-Ting
論文名稱: 整合重心估測與力矩控制於提昇雙足機器人行走穩定性
Integration of CoG Estimation and Torque Control for Enhancing Walking Stability in Bipedal Robots
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員: 林沛群
Lin, Pei-Chun
劉承賢
Liu, Cheng-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 55
中文關鍵詞: 雙足機器人重心自適應控制器串聯彈性致動器力矩控制
外文關鍵詞: bipedal robot, center of gravity estimation, serial elastic actuator, torque control
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在整合重心估測與力矩控制提昇雙足機器人行走穩定性。利用三維線性倒單擺模型(3D LIPM)簡化機器人動態模型,並設計以踝關節力矩作為輸入的平衡控制器,考慮實際系統的重心位置會因量測誤差或機器人姿態改變而存在一定的偏差量,若僅回授量測的重心位置,便會因重心有所偏差而使機器人平衡時存在穩態誤差,因此本研究利用重心自適應控制器以估測重心的偏差量,藉此修正機器人之實際重心位置。接著規劃機器人之行走模型,包含質心軌跡、支撐腳位置及擺動腳軌跡,使機器人能向前行走。本研究亦開發一彈性元件串聯於伺服馬達與負載之間,經由量測彈性元件之變形量,使伺服馬達達到串聯彈性致動器(SEA)的效果,使輸出力矩可以精準控制,藉此驗證重心估測自適應控制器之可行性並提昇機器人行走時的穩定性。


    This thesis focuses on enhancing walking stability in bipedal robots. The traditional method needs accurate center of gravity (CoG); however, the measured CoG information is influenced by the posture of robot or measurement errors. We utilize an adaptive controller to estimate the actual CoG. The adaptive controller contains two parts: the adaption part and the PD control part. While the adaption part estimates the deviation between the measured and actual CoG to calculate the estimated CoG position, the PD control part uses the estimated CoG position and measured CoG velocity to stabilize the bipedal robot. Then we generate a walking pattern, including CoG trajectory, support leg position and swing leg trajectory, and utilize adaptive controller as stabilizer to control actual robot. In this thesis we design an elastic device which allows a conventional servo motor to be upgraded to serial elastic actuator (SEA). Therefore, we install SEA in ankles of robot to control torque accurately. Simulations and experiments verify the feasibility of enhancing stability in bipedal robots by the adaptive control algorithm and torque control.

    摘要-I ABSTRACT-I 誌謝-I 目錄-II 圖目錄-IV 表目錄-VIII 第一章 緒論-1 1.1研究動機與目的-1 1.2文獻回顧-5 1.3論文簡介-7 第二章 系統動態模型-8 2.1三維線性倒單擺模型-8 2.2動態方程式-10 第三章 雙足機器人穩定控制器設計-12 3.1比例微分控制器-12 3.2重心自適應控制器-13 3.3模擬結果-15 第四章 雙足機器人行走模型-19 4.1行走模型推導-19 4.2擺動腳軌跡規劃-27 4.3模擬結果-30 第五章 雙足機器人實作-32 5.1硬體介紹-32 5.2機器人運動控制-39 5.3實驗結果-44 第六章 結論與未來工作-51 參考文獻-53 附錄A 兩段式啟動電路-55

    [1] “Pepper,” Aldebaran Robotics, SoftBank Robotics Corp., [Online]. Available:https://www.ald.softbankrobotics.com/en/cool-robots/pepper.
    [2] “Zenbo,” ASUSTeK Computer Inc., [Online]. Available: https://zenbo.asus.com/tw/.
    [3] T. McGeer, “Passive dynamic walking,” The international journal of robotics research, vol. 2, no. 9, pp. 62-82, 1990.
    [4] “ASIMO,” Honda Motor Co., Ltd., [Online]. Available: http://asimo.honda.com/.
    [5] “NAO,” Aldebaran Robotics, SoftBank Robotics Corp., [Online]. Available: https://www.ald.softbankrobotics.com/en/cool-robots/nao.
    [6] S. Kajita, H. Hirukawa, K. Harada and K. Yokoi, Introduction to humanoid robotics. Springer, 2014.
    [7] C. F. Huang and T. J. Yeh, “Control of a Pedaled, Self-balanced Unicycle with Adaptation Capability,” 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria, pp. 120-126, 2014.
    [8] M. M. Williamson, Series elastic actuators. MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1995.
    [9] M. Vukobratovic, B. Borovac, D. Surla and D. Stokic, Biped locomotion: dynamics, stability, control and application. Springer Verlag, 1990.
    [10] K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka, “The development of Honda humanoid robot,” 1998 IEEE International Conference on Robotics and Automation, Leuven, vol. 2, pp. 1321-1326, 1998.
    [11] P. A. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J. G. D. Karssen, C. Paul and A. Ruina, “Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge,” The International Journal of Robotics Research, vol. 33, pp. 1305-1321, 2014.
    [12] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi and B. Morris, Feedback control of dynamic bipedal robot locomotion. CRC Press, 2007.
    [13] J. W. Grizzle, C. Chevallereau, A. D. Ames and R. W. Sinnet, “3D bipedal robotic walking: models, feedback control, and open problems,” IFAC Proceedings Volumes, vol. 43, pp. 505-532, 2010.
    [14] 黃浚鋒 (Huang, Chun-Feng). “腳踏動力自我平衡獨輪車之重心適應控制與打滑穩定器設計, Center of Gravity Adaptation and Anti-slip Control for a Pedaled Self-balanced Unicycle”. In: 清華大學動力機械工程學系學位論文(2016), pp. 1-122.
    [15] X. Mu and Q. Wu, “Sagittal gait synthesis for a five-link biped robot,” Proceedings of the 2004 American Control Conference, Boston, MA, USA, vol. 5, pp. 4004-4009, 2004.
    [16] “STM32F446RE,” STMicroelectronics, [Online]. Available: http://www.st.com/en/microcontrollers/stm32f446re.html
    [17] “LSM9DS0,” SparkFun Electronics, [Online]. Available: https://www.sparkfun.com/products/retired/12636

    QR CODE