研究生: |
詹竣凱 Chan, Chun-Kai |
---|---|
論文名稱: |
應用雙層多晶矽製程平台於微型電容感測元件之開發 Development of Micro Capacitive Sensors Using The Two Poly-Si Fabrication Platform |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
楊燿州
白明憲 謝哲偉 盧向成 吳名清 方維倫 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 微機電製程平台 、電容式感測器 、微麥克風 、微加速度計 |
外文關鍵詞: | MEMS fabrication platform, capacitance sensor, microphone, micro accelerometer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙層多晶矽微機電製程平台-MOSBE,以目前最通用之多晶矽薄膜製程技術為主軸,整合體蝕刻製程(bulk micromachining)、兩階段自對準深蝕刻(self-aligned)、多晶矽孔道回填(trench-refill)、正面結構蝕刻(front-side etching)等多項技術。此製程提供設計者於結構厚度與垂直深度上的變化來完成三維結構的設計;目前已成功開發出多項光學元件,證明其符合光學結構之設計需求。微感測器在微機電系統中,是非常重要的應用。於現今多元化的數位時代,消費性電子產品透過周圍環境訊號的偵測與擷取,將可即時達成人機介面的整合。電容原理所開發之感測元件具備多項優點,透過電極板的位移使電容產生變化,來進行環境訊號的偵測。本研究將透過兩種常用之電容感測模式來進行元件的設計開發,藉此驗證製程平台的通用特性,符合電容式感測元件的設計需求。研究將以三種感測元件的開發為例,首先以剛性振膜微麥克風為例,透過出平面方向之間隙閉合模式(gap-closing),偵測聲音訊號的變化。接著以擺錘式雙軸微加速度計為例,透過重合面積改變模式(area-change),進行加速度的感測。最後以三軸加速度計為例,透過出平面方向及同平面方向之間隙閉合模式,進行加速度的感測。藉由各式電容感測模式的元件開發,來完成MOSBE 微機電製程平台的通用特性驗證。
The two polysilicon MEMS fabrication platform MOSBE is base on the popular polysilicon thin-film fabrication technology. MOSBE integrated bulk micromachining, self-aligned, trench-refill, front-side etching. This process provides the designer on the thickness of the structure and vertical depth changes to complete the three-dimensional
structure. Presently MOSBE has successfully developed a number of optical devices that using in optical components can be confirmed. Micro sensors are very important devices in MEMS. Consumer electronics products detection and acquisition by the environment signal, thus the micro-sensors can be integrated to achieve real-time human-machine
interface. Capacitive sensing device have many advantages, however resulting from the displacement of the electrode plate capacitance change, environmental signals can be detected. Capacitive micro sensors detected environmental signals by the displacement of the electrode plate and then
capacitance change. In this study, the micro capacitance devices have successfully developed with MOSBE platform. Two capacitance sensing method has been proved by MOSBE platform. It does conform to micro capacitance device performance. First, the rigid diaphragm microphone sensing signals method by out-of-plane gap-closing. Second, the 2-axis accelerometer sensing method by in plane area change. Final, the 3-axis accelerometer sensing method by in plane gap closing (x-axis and y-axis) and out-of-plane gap closing (z-axis). Therefore, the MOSBE fabrication platform has successfully developed with the capacitance devices.
[1] K.E. Petersen, “Silicon as a mechanical material,” Electron Devices, IEEE Transactions, 70, pp. 420-457, 1982.
[2] R.T. Howe, R.S. Muller, K.J. Gabriel, and W.S.N. Trimmer, “Silicon micromechanics: sensors and actuators on a chip,” IEEE spectrum, 27, pp. 29-35, 1990.
[3] 丁志明等, 微機電系統技術與應用, 台灣, 國科會精密儀器發展中心, 2003.
[4] W. L. Buehner, J. D. Hill, T. H. Williams, and J. W. Woods ,“Application of ink-jet technology to a word processing output printer,” IBM J. Res., 21, pp. 2-9, 1977.
[5] K.E. Petersen, “Silicon torsional scanning mirror,” IBM J. Res., 24, pp. 631-637, 1980
[6] S.K. Clark and K.D. Wise, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, ED-26, pp. 1887-1896, 1979.
[7] http://www.memsic.com/products/memsgasmassflowmeter.html
[8] http://www.knowles.com/search/
[9] http://www.analog.com/en/index.html
[10] http://www.invensense.com/
[11] http://www.asahi-kasei.co.jp/akm/en/index.html
[12] C.T.-C. Nguyen, “Micromechanical components for miniaturized low-power communications(invited plenary),” IEEE MTT-S, pp.48-77, 1999.
[13] P. R. Gray and R. G. Meyer, “Future directions in silicon ICs for RF personal communications,” Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, Santa Clara, CA , USA , May 1995, pp. 83–90.
[14] C. T.-C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, 86, pp. 1756–1768, 1998.
[15] J. Craninckx and M. S. J. Steyaert “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral Inductors,” IEEE Journal of Solid-State Circuits, 32, pp. 736–744, 1997.
[16] G. Fuhr, R. Hagedorn, T. Muller, “Linear Motion of Dielectric Particles and Living Cells in Microfabricated Structures Induced by Traveling Electric Fields,” Proceeding of IEEE MEMS, pp. 259-264, 1991.
[17] http://www.memscap.com/:MEMSCAP-PolyMUMPs
[18] M. Wu, and W. Fang, , “Design and Fabrication of MEMS Devices Using the Integration of MUMPs, Trench-refilled Molding, DRIE, and Bulk Silicon Etching Processes,” Journal of Micromechanics and Microengineering, 15, pp 535-542, 2005.
[19] http://www.apple.com/
[20] http://nextgenlog.blogspot.com/
[21] http://www.nintendo.co.jp/wii/
[22] http://www.audi.com/com/brand/en.html
[23] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, 86, pp 1552-1574, 1998.
[24] K. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, "Microfabricated hinges," Sensors and Actuators A, 33, pp 249-256, 1992.
[25] L. S. Fan, Y. C. Tai and R. S. Muller, “IC-processed Electrostatic Micromotors,” Sensors and Actuators A, 20, pp 41-47, 1989.
[26] W. Tang, V. Temesvary, R. Miller, A. Desai, Y.-C. Tai, and D. K. Miu,“Silicon micromachined electromagnetic microactuators for rigid disk drives,” Transactions on Magnetics,, 31, pp 2964–2966, 1995.
[27] K. Wang, and C. T.–C. Nguyen, “High-Order Micromechanical Electronic Filters,” Proceedings of the 1997 10th Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan, 1997, pp 25-30.
[28] M. A. Lemkin, B. E. Boser, D. Auslander, and J. H. Smith, “A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass,” Transducers’97, Chicago, USA, Jun, 1997, pp 1185-1188.
[29] C. T.-C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, 86, pp 1756-1768, 1998.
[30] G.-D. J. Su, H. Nguyen, P. Paterson, H. Toshiyoshi, and M. C. Wu, “Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors,” IEEE Journal of Photonics Technology Letters, 13, pp 606–608, 2001.
[31] M. C. Wu, Olav Solgaard, and J. E. Ford, “Optical MEMS for Lightwave Communication,” Journal Lightwave Technology, 24, pp. 4433-4454, 2006.
[32] http://www.sony.com/
[33] http://www.lenovo.com/tw/zh/
[34] http://www.nokia.com.tw/
[35] http://www.samsung.com/
[36] W.P. Eaton and J.H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Master., 6, pp. 530-539, 1997.
[37] F. Goodenough, “Airbags boom when IC accelerometer sees 50g”, Electronic Design, 39, Aug., 1991.
[38] K. H.-L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart and R.G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications”, Sensors and Actuators A, 54, pp 472-476, 1996.
[39] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E.Wuganuma and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities”, Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
[40] H. Xie and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing”, IEEE MEMS’2000, Miyazaki, Japan, Jan. 2000, pp. 496-501.
[41] Y. Matsumoto, M. Nishimura, M. Matsuura and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter”, Sensors and Actuators A, 75, pp. 77-85, 1999.
[42] L. C. Spangler and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer”, Sensors and Actuators A, 54, pp523-529, 1996.
[43] G. Li and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer”, IEEE Transactions on Electronics Packaging Manufacturing, 24, pp. 18-25, 2001.
[44] E. Belloy, A. Sayah and M. A. M. Gijs, “Micromachining of glass inertial sensors”, Journal of Microelectromechanical Systems, 11, pp. 85-90, 2002.
[45] K. Ishihara, C.-F. Yung, A. A. Ayon and M. A. Schmidt, “Aninertial sensor technology using DRIE and wafer bonding with interconnecting capability”, Journal of Microelectromechanical Systems, 8, pp. 403-408, 1999.
[46] J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, “Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer”, IEEE MEMS’1997, Nagoya, Japan, Jan. 1997, pp. 31-36.
[47] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev, 94, pp. 42-49, 1954.
[48] A. Gieles, “Submmiature silicon pressure transducers,” Solid-State Circuits Conference, 12, pp. 108-109, 1969.
[49] T. N. Jackson, M.A. Tischler, and K.D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” Electron Device Letters, 2, pp. 44-45, 1981.
[50] S. Sugiyama, K. Shimaoka, and O. Tabata, “Surface micromachined micro-diaphragm pressure sensors,” Transducers’ 91, San Francisco, CA, USA, Jun, 1991, pp. 188-191.
[51] B. Folkmer,; P. Steiner, and W. Lang, “A pressure sensor based on a nitride membrane using single crystalline piezoresistors,” Transducers '95, 2, Stockholm, Sweden, June 1995, pp. 574-577.
[52] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer”, IEEE Transactions on Electronic Devices, 26, pp. 1911-1917, 1979.
[53] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M.Fitzgerald, L. Zhang, N. I. Maluf and T. W. Kenny, “A high–performance planar piezoresistive accelerometer”, Journal of Microelectromechanical Systems, 9, pp. 58-66, 2000.
[54] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect”, IEEE Transactions on Electronic Devices, 35, pp. 764-770, 1988.
[55] P. Scheeper, J. O. Gulloy and M. Kofoed, “A piezoelectric triaxial accelerometer”, Journal of Micromechanics and Microengineering, 6, pp. 131-133, 1996.
[56] T. Storgaard-Larsen, S. Bouwstra and O. Leistiko, “Optomechanical accelerometer based on strain sensing by a bragg grating in a planar waveguide”, Sensors and Actuators A, 52, pp. 25-32, 1996.
[57] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution”, Journal of Microelectromechanical Systems, 7, pp. 235-244, 1998.
[58] M. Sheplak , M. A. Schmidt and K. S. Breuer “Dielectrically-isolated, single-crystal silicon, piezoresistive microphone”, Tech. Dig., Solid-State Sensor and Actuator Workshop, pp. 23 , 1998.
[59] R. Saini, S. Bhardwaj , T. Nishida and M. Sheplak “Scaling relations for piezoresistive microphones”, Proc. IMECE 2000 Int. Mech. Eng. Congr. Expo, Orlando, FL, Nov 2000, pp. 241.
[60] D. P. Arnold, T. Nishida and M. Sheplak “Piezoresistive microphone for aeroacoustic measurement”, Proc. 2001 ASME Int. Mechan. Eng. Congr. Expo., New York, Nov 2001, pp. 1-8.
[61] Fazzio, R.S., Lamers, T., Buccafusca, O., Goel, A., Dauksher, W., “Design and Performance of Aluminum Nitride Piezoelectric Microphones”, TRANSDUCERS 2007, Fort Collins, Colorado, USA, June 2007, pp. 1255 – 1258.
[62] S. S. Lee, Ried, R.P., White, R.M., “Piezoelectric cantilever microphone and microspeaker”, IEEE Journal of Microelectromechanical Systems, 5, pp. 238 - 242, 1996.
[63] M.-N. Niu, and E. S. Kim, “Piezoelectric bimorph microphone built on micromachined parylene diaphragm”, Journal of Microelectromechanical Systems, 12, pp. 892 – 898, 2003.
[64] W. Kuhnel, “Silicon condenser microphone with integrated field effect transistor,” Sensors and Actuators A, 25-27, pp. 521-525, 1991.
[65] T. Bourouina, S. Spirkovitch, F. Baillieu, and C. Vauge, “A new condenser microphone with a P + silicon membrane,” Sensors and Actuators A, 31, pp. 149-152, 1992.
[66] E. Graf, W. Kronast, S. Diihring, B. Muller, and A. Stoffel, “Silicon membrane condenser microphone with integrated field-effect transistor,” Sensors and Actuators A, 37-38, pp. 708-711, 1993.
[67] J. J. Bernstein and J. T. Borenstein, “A Micromachined Silicon Condenser Microphone With On-Chip Amplifier”, in Digest Tech. Papers Solid State Sensor and Actuator Workshop, Hilton Head, SC, June, 1996, pp. 239-243.
[68] Y. B. Ning, A. W. Mitchell and R. N. Tait, “Fabrication of a silicon micromachined capacitive microphone using a dry-etch process”, Sensors and Actuators A, 53, pp. 237–242, 1996.
[69] M. Pedersen, W. Olthuis and P. Bergveld, “An integrated silicon capacitive microphone with frequency modulated digital output”. Sensors and Actuators A, 69, pp. 267–275, 1998.
[70] P.-C. Hsu, C.H. Mastrangelo, and K.D. Wise, “A High Sensitivity Polysilicon Diaphragm Condenser Microphone”, IEEE MEMS 1998, Heidelberg, Germany, Jan, 1998, pp. 580-585.
[71] J. Bay, O. Hansen and S. Bouwstra, “Micromachined double backplate differential capacitive microphone”, J. Micromech. Microeng, 9, pp. 30, 1999.
[72] X. Li, R. Lin, H. Kek, J. Miao, and Q. Zou, “Sensitivity-improved condenser microphone with a novel single deeply corrugated diaphragm,” Sensors and Actuators A, 92, pp. 257-262, 2001.
[73] J. J. Neumann Jr., and K. J. Gabriel, “CMOS-MEMS Membrane for Audio-frequency Acoustic Actuation,” Sensors and Actuators A, 95, pp. 175-182, 2002.
[74] S. T. Hansen , A. S. Ergun , W. Liou , B. A. Auld and B. T. Khuri-Yakub "Wideband micromachined capacitive microphones with radio frequency detection", J. Acoust. Soc. Amer., 116, pp. 828 2004.
[75] P. V. Loeppert, and S. B. Lee, “SiSonicTM – The First Commercialized MEMS Microphone,” Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June, 2006, pp. 27-30.
[76] M. Goto, Y. Iguchi, K. Ono, A. Ando, F. Takeshi, S. Matsunaga, Y. Yasuno, K. Tanioka, and T. Tajima, “High-Performance Condenser Microphone with Single-Crystalline Silicon Diaphragm and Backplate,” IEEE Sensors Journal, 7, pp. 4-10, 2007.
[77] US Patent 3118022 - Gerhard M. Sessler James E. West - Bell labs - electroacustic transducer - foil electret condenser microphone 1962 1964 - pages 1-3.png.
[78] P. R. Scheeper, W. Olthuis, and P. Bergveld, “The Design, Fabrication and Testing of Corrugated Silicon Nitride Diaphragms,” IEEE Journal of Microelectromechanical Systems, 3, pp. 36-42, 1994.
[79] J. Miao, R. Lin, L. Chen, Q. Zou, S. Y. Lim, and S. H. Seah, “Design considerations in micromachined silicon microphones,” Microelectronics Journal, 33, pp. 21-28, 2002.
[80] J. W. Weigold, T. J. Brosnihan, J. Bergeron, and X. Zhang, “A MEMS Condenser Microphone for Consumer Applications,” IEEE MEMS2006, Istanbul, Turkey, 2006, pp. 86-89.
[81] X. Li, R. Lin, H. Kek, J. Miao and Q. Zou, “Sensitivity-Improved Silicon Condenser Microphone with a Novel Single Deeply Corrugated Diaphragm,” Sensors and Actuators A, 92, 2001, pp. 257-262.
[82] Q. Zou and Z. Li, “Design and fabrication of silicon condenser microphone using corrugated diaphragm technique,” Journal of microelectromechanical systems, 5, pp.197-204, 1996.
[83] P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design, fabrication, and testing of corrugated silicon nitride diaphragms,” Journal Microelectromechanical Systems, 3, pp. 36-42, 1994.
[84] J. Miao and R. Lin, “Design considerations in micromachined silicon microphones,” Microelectronics Jonrnal, 33, pp. 21-28, 2002.
[85] J. Chen, L. Liu, Z. Li, Z. Tan, Y. Xu, and J. Ma, “On the single-chip condenser miniature microphone using DRIE and back side etching tech-niques,” Sensors and Actuators A, 103, pp. 42-47 , 2003.
[86] A. Dehe, "Silicon microphone development and. application", Sensors and Actuators A, 133, pp. 283-287, 2007.
[87] R.N. Miles, Q. Su, W. Cui, M. Shetye, F.L. Degertekin, B. Bicen, C.Garcia, S. Jones, N. Hall, “A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea,” J. of Acoust. Soc. Am., 125, pp. 2013, 2009.
[88] M. Wu, and W. Fang, “The Molded Surface-micromachining and Bulk Etching Release (MOSBE) Fabrication Platform on (111) Si for MOEMS,” Journal of Micromechanics and Microengineering, 15, pp. 260-265, 2005.
[89] W. Marshall L, Introduction to electroacoustics and audio amplifier design. 3nd Ed., United Stated of America, Kendall / Hunt Publishing company, 2003.
[90] Q. Zou, Z. Li, and L. Liu, “Theoretical and experimental studies of single-chip-processed miniature silicon condencer microphone with corrugated diaphragm,” Sensors and Actuators A, 63, pp. 209-215, 1997.
[91] LM. Roylance and J. B. Angell,“A Batch-Fabricated Silicon Accelerometer”,IEEE Trans. Electron Devices, 26, pp 1911, 1979.
[92] F. Rudolf,“A Micromechanical Capacitive Accelerometer with A Two-Point Inertial-Mass Suspension”, Sensors and Actuators A, 4,pp. 191-198, 1983.
[93] Boser,B.E., and Howe,R.T.“Surface micromachined accelerometers,” IEEE Journal of Solid—State Circuits, 3, pp. 366-375, 1996.
[94] F. Shemansky, Lj. Ristic, D. Koury, and E. Joseph, “A two-chip accelerometer system for automotive applications,” Microsystem Technologies '94, Germany, Berlin, Oct, 1997, pp. 121–125.
[95] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, 6, pp. 431-435, 1996.
[96] H. Urey, “Torsional MEMS scanner design for high-resolution display systems,” in Proc. SPIE, 4773, pp.27-37, 2002.
[97] H. Urey, “MEMS scanners for Display and Imaging Application,” in Proc. SPIE– Optomechantronic Micro/Nano Components, Devices, and Systems, 5604, pp. 218-229, 2004.