研究生: |
吳冠儒 Wu, Kuan-Ju |
---|---|
論文名稱: |
單量子井發光高電子遷移率電晶體之研究 Study on Light Emitting High Electron Mobility Transistor with Single Quantum Well |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
吳育任
Wu, Yuh-Renn 楊尚樺 Yang, Shang-Hua |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 氮化鎵 、氮化銦鎵 、量子井 、發光高電子遷移率電晶體 、增強型 |
外文關鍵詞: | GaN, InGaN, SQW, LE-HEMT, E-mode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文著重於單量子井發光高電子遷移率電晶體(light emitting high electron mobility transistor, LEHEMT)之研究,藉由在二維電子氣(two dimensional electron gas, 2DEG)通道下方加入一層氮化銦鎵量子井(InGaN quantum well)結構來改善元件內部量子效率以及調變發光波長。
本次實驗成功製作出單量子井發光高電子遷移率電晶體。其閾值 電壓(threshold voltage, Vth)為 0.5 V,片電阻(sheet resistance, Rsh)為 1875.9 Ω/□。在閘極電壓為 4 V 時,導通電阻(specific onstate resistance, Ron,sp)和飽和電流(saturation current, Isat)分別為 3.31 mΩcm2 和 162.88 mA/ mm。
在發光方面,光輸出功率(light output power, LOP)最高來到 4 μW, 為無量子井結構的兩倍。在閘極電壓為 4 V 且汲極電流為 32 mA 時,出現 兩個主要的發光波長,其中一個為波長 365 nm 的紫外光,另一個為波長 528 nm 的藍綠光,並可透過閘極電壓、汲極電流來控制發光強度。
In this thesis, we focus on the sudy of LEHEMT(light emitting high electron mobility transistor)with single quantum well. An InGaN quantum well layer is added under the 2DEG(two dimensional electron gas)channel in the epitaxial structures to improve the internal quantum efficiency and adjust the wavelength.
From the experiment, LEHEMT with single quantum well was successfully fabricated. The Vth(threshold voltage)was 0.5 V, and Rsh(sheet resistance) was 1875.9 Ω/□. When the gate voltage was 4 V, the Ron,sp(specific onstate resistance)and Isat(saturation current)were 3.31 mΩcm2 and 162.88 mA/mm respectively.
In the aspect of light emitting, the largest LOP(light output power)was 4 μW, which was twice than that of the strucutre without quantum well. There were two peaks at different wavelengths when gate voltage was 4 V and drain current was 32 mA. One was UV(ultraviolet)light at 365 nm, and the other was blue green light at 528 nm. In addition, the emitting intensity could be modulated by the gate voltage and the drain current.
[1] L. Spaziani and L. Lu, “Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations,” in 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), May 2018, pp. 8–11.
[2] A. W. M. Zuhdi, J. J. McKendry, R. K. Henderson, E. Gu, M. D. Dawson, and I. Under wood, “GaN based μ LED drive circuit for Visible Light Communication (VLC) with improved linearity using onchip optical feedback,” in 2016 IEEE Region 10 Conference (TENCON), Nov. 2016, pp. 3394–3397.
[3] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1xN heterojunctions,” Applied Physics Letters, vol. 60, no. 24, pp. 3027– 3029, Jun. 15, 1992.
[4] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaNAlxGa1xN heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp. 1214–1215, Aug. 30, 1993.
[5] N.Q. Zhang, S. Keller, G. Parish, S. Heikman, S. DenBaars, and U. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 421–423, Sep. 2000.
[6] J. Liu, Y. Zhou, J. Zhu, K. Lau, and K. Chen, “AlGaN/GaN/InGaN/GaN DHHEMTs with an InGaN notch for enhanced carrier confinement,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 10–12, Jan. 2006.
[7] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low OnResistance HighBreakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Letters, vol. 31, no. 2, pp. 111–113, Feb. 2010.
[8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “PType Conduction in MgDoped GaN Treated with LowEnergy Electron Beam Irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, p. L2112, 12A Dec. 1989.
[9] Isamu Akasaki, Hiroshi Amano, Masahiro Kito, and Kazumasa Hiramatsu, “Photoluminescence of Mgdoped ptype GaN and electroluminescence of GaN pn junction LED,” Journal
of Luminescence, vol. 4849, pp. 666–670, Jan. 1, 1991.
[10] S. Nakamura, M. Senoh, and T. Mukai, “Highpower InGaN/GaN doubleheterostructure violet light emitting diodes,” Applied Physics Letters, vol. 62, no. 19, pp. 2390–2392, May 10, 1993.
[11] S. Nakamura, T. Mukai, and M. Senoh, “Highbrightness InGaN/AlGaN doubleheterostructure bluegreenlightemitting diodes,” Journal of Applied Physics, vol. 76, no. 12, pp. 8189–
8191, Dec. 15, 1994.
[12] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on PType MgDoped GaN Films,” Japanese Journal of Applied Physics, vol. 31, p. L139, 2B Feb. 1992.
[13] D. Iida, Z. Zhuang, P. Kirilenko, M. VelazquezRizo, and K. Ohkawa, “Demonstration of low forward voltage InGaNbased red LEDs,” Applied Physics Express, vol. 13, no. 3, p. 031 001, Feb. 2020.
[14] K.H.Li,Y.F.Cheung,W.Jin,W.Y.Fu,A.T.L.Lee,S.C.Tan,S.Y.Hui,andH.W. Choi, “InGaN RGB LightEmitting Diodes With Monolithically Integrated Photodetec tors for Stabilizing Color Chromaticity,” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 5154–5160, Jun. 2020.
[15] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, “Monolithic integration of lightemitting diodes and power metaloxidesemiconductor channel high electronmobility transistors for lightemitting power integrated circuits in GaN on sap phire substrate,” Applied Physics Letters, vol. 102, no. 19, p. 192 107, May 13, 2013.
[16] C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, “Metalinterconnectionfree integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 106, no. 18, p. 181 110, May 4, 2015.
[17] Y. Cai, X. Zou, C. Liu, and K. M. Lau, “VoltageControlled GaN HEMTLED Devices as FastSwitching and Dimmable Light Emitters,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 224–227, Feb. 2018.
[18] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polariza tion in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, no. 1, pp. 334–344, Dec. 15, 1999.
[19] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric po larization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450–457, Mar. 2001.
[20] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normallyoff HEMTs with pGaN gate,” Materials Science in Semiconductor Processing, Wide Band Gap Semiconductors Technology for next Generation of Energy Efficient Power Electronics, vol. 78, pp. 96–106, May 1, 2018.
[21] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, “Photoluminescence in vestigation of InGaN/GaN single quantum well and multiple quantum wells,” Applied Physics Letters, vol. 73, no. 24, pp. 3571–3573, Dec. 14, 1998.
[22] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with pdoped quantum well barriers,” Applied Physics Letters, vol. 93, no. 12, p. 121 107, Sep. 22, 2008.
[23] B.C. Lin, K.J. Chen, H.V. Han, Y.P. Lan, C.H. Chiu, C.C. Lin, M.H. Shih, P.T. Lee, and H.C. Kuo, “Advantages of Blue LEDs With GradedComposition AlGaN/GaN Superlattice EBL,” IEEE Photonics Technology Letters, vol. 25, no. 21, pp. 2062–2065, Nov. 2013.
[24] C.C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezell, “HighPower, LowEfficiencyDroop Semipolar (2021) SingleQuantumWell Blue LightEmitting Diodes,” Applied Physics Express, vol. 5, no. 6, p. 062 103, Jun. 4, 2012.
[25] Y. Zhao, S. Tanaka, C.C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “HighPower BlueViolet Semipolar (202 ̄1 ̄) InGaN/GaN LightEmitting Diodes with Low Efficiency Droop at 200 A/cm2̂$,” Applied Physics Express, vol. 4, no. 8, p. 082 104, Jul. 15, 2011.
[26] J. Iveland, J. S. Speck, L. Martinelli, J. Peretti, and C. C. A. Weisbuch, “Auger effect identified as main cause of efficiency droop in LEDs,” 2014.