簡易檢索 / 詳目顯示

研究生: 楊弘源
Yang, Hong-Yen
論文名稱: 無線隨意網路中以虛擬骨幹為基礎之路由協定
Virtual-Backbone-Based Routing Protocols in Wireless Ad Hoc Networks
指導教授: 蔡明哲
Tsai, Ming-Jer
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 78
中文關鍵詞: 繞徑虛擬骨幹無線隨意網路
外文關鍵詞: routing, virtual backbone, wireless ad hoc networks
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Routing is an important issue that affects wireless ad hoc networks.
    The virtual backbone is usually constructed to compute and maintain
    routes in wireless ad hoc networks due to the scale and the
    dynamics. Since the wireless sensor network and the mobile ad hoc
    network are two popular wireless ad hoc networks, I undertake, in
    this dissertation, the development of virtual-backbone-based routing
    protocols in these two networks. In the first part of the
    dissertation, I propose a virtual-backbone-based routing protocol
    that guarantees packet delivery without the location information and
    the computation and storage of the global topological features in
    wireless sensor networks. I first propose a method, ABVCap, to
    construct axes as the virtual backbone for assigning virtual
    coordinates in a wireless sensor network. ABVCap assigns each node
    multiple 5-tuple virtual coordinates. Subsequently, I introduce a
    protocol, ABVCap routing, to route packets based on the axes and
    ABVCap virtual coordinate system. ABVCap routing guarantees packet
    delivery without the computation and storage of the global
    topological features. Finally, I demonstrate an approach, ABVCap
    maintenance, to reconstruct the axes and an ABVCap virtual
    coordinate system in a network with node failures. Simulations show
    ABVCap routing ensures moderate routing path length, as compared to
    routing protocols, GLIDER, Hop ID, GLDR, and VCap. In the second
    part, I propose a virtual-backbone-based routing protocol that
    reduces the route searching space in mobile ad hoc networks. Since
    the virtual backbone in mobile ad hoc networks is requested to be
    connected and as small as possible, a connected $k$-hop dominating
    set is used as the virtual backbone. A $k$-hop dominating set is a
    subset of nodes such that each node not in the set can be reached
    within $k$ hops from at least one node in the set. In mobile ad hoc
    networks, a connected $k$-hop dominating set may become disconnected
    due to node mobility or switch-off, necessitating the reformation of
    the $k$-hop dominating set. Therefore, I identify a sufficient
    condition that guarantees the connectivity of the virtual backbone.
    The condition can be verified in a distributed manner by the node
    only having the link information of its neighbors. With the help of
    this condition, I propose a distributed algorithm to efficiently
    construct and maintain connected $k$-hop dominating sets in mobile
    ad hoc networks. Then the virtual-backbone-based routing protocol
    that reduces the route search space to a connected $k$-hop
    dominating set is introduced. Simulations show that our connected
    $k$-hop dominating set is small and stable and needs little
    maintenance overhead in the Random-Walk Mobility and Gauss-Markov
    Mobility Models.


    繞徑是在無線隨意網路當中一項重要的議題。由於無線隨意網路大規模和
    動態的特性,虛擬骨幹常被用來計算和維護路徑。而無線感測器網路和行動
    隨意網路則是兩種最受歡迎的無線隨意網路,因此在本篇博士論文中,我將
    發展以虛擬骨幹為基礎的路由協定在這兩種網路當中。在本篇博士論文的第
    一部分中,我發展一個以虛擬骨幹為基礎且能保證傳輸而不需要地理位置資訊
    和計算儲存整個網路拓墣資訊的路由協定。我首先提出一個方法ABVCap建立
    軸為虛擬骨幹並利用軸來設定無線感測器網路中的虛擬座標,ABVCap 設定
    多個五維的座標給每一個節點。接下來,我介紹一個利用軸和ABVCap虛擬座
    標的路由協定,該路由協定保證傳輸且不需要整個網路拓樸的特性。最後,在
    網路中有壞掉節點的環境下,我發展一套維護的方法來重建軸和虛擬座標。實
    驗結果顯示此路由協定和GLIDER、Hop ID、GLDR和VCap比較起來,此路由
    協定需要適度的路由長度。在第二部分當中,我提出一個在行動隨意網路中以
    虛擬骨幹為基礎的路由協定使得尋找路由的範圍可以減少。因為在行動隨意網
    路中,虛擬骨幹被要求為相連且盡可能的小,相連的K-中繼點控制集被當作虛
    擬骨幹。K-中繼點控制集是一群節點的集合使得每一個不是在集合內的節點都
    可以由一個在集合內的節點經由K節段數到達。在無線隨意網路中,一個相連
    的K-中繼點控制集可能因為節點的移動或離開網路而成為不相連的K-中繼點控
    制集,此時就需要重新建立一個K-中繼點控制集。因此我們確認一個充分條件
    可以保證虛擬骨幹的相連。這個充分條件可以利用分散式的方法來確認是否滿
    足,每個節點只需要鄰居節點間相連的資訊。藉由這個充分條件,我們提出一
    個有效率的分散式方法建立和維持一個相連的K-中繼點控制集在行動隨意網路
    中。然後一個以虛擬骨幹為基礎且能將路徑尋找範圍減少至K-中繼點控制集的
    路由協定被提出。實驗結果顯示建立的K-中繼點控制集小而穩定,而且在隨意
    行走移動模組和高斯移動模組的環境下只需要少量的負擔就可以維持。

    Contents List of Figures ix List of Tables xii 1 Introduction 1 2 Virtual-Backbone-Based Routing Protocol inWireless Sensor Networks 3 2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 The VCap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The ABVCap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1.1 Election of Anchor . . . . . . . . . . . . . . . . . . 10 2.2.1.2 Establishment of Axes . . . . . . . . . . . . . . . . 10 2.2.1.3 Assignment of Longitude, Latitude, and Ripple Co- ordinates . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1.4 Assignment of Up and Down Coordinates . . . . . 13 2.2.2 An ABVCap Example . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Correctness of ABVCap . . . . . . . . . . . . . . . . . . . . 16 2.3 ABVCap Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 v 2.3.1 The Routing Protocol . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 An ABVCap Routing Example . . . . . . . . . . . . . . . . 19 2.3.3 Guaranteed Delivery of ABVCap Routing . . . . . . . . . . 20 2.4 ABVCap Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 The Maintenance Protocol . . . . . . . . . . . . . . . . . . . 21 2.4.1.1 Election of New Anchors . . . . . . . . . . . . . . . 22 2.4.1.2 Reconstruction of Axes . . . . . . . . . . . . . . . . 22 2.4.1.3 Update of Ripple, Up, and Down Coordinates . . . 26 2.4.1.4 ABVCap Routing in a Network with Node Failures 27 2.4.2 An ABVCap Maintenance Example . . . . . . . . . . . . . . 27 2.4.3 Correctness of ABVCap Maintenance . . . . . . . . . . . . . 29 2.5 Analysis of Message Overhead and Routing Path Length . . . . . . 31 2.5.1 Message Overhead . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.2 Expected Routing Path Length . . . . . . . . . . . . . . . . 32 2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.1 Simulation Results on a Packet Level Simulator . . . . . . . 34 2.6.1.1 Packet Delivery Rate . . . . . . . . . . . . . . . . . 34 2.6.1.2 Routing Path Length . . . . . . . . . . . . . . . . . 35 2.6.1.3 Number of Next Hop Neighbors . . . . . . . . . . . 36 2.6.1.4 Load Imbalance Factor . . . . . . . . . . . . . . . . 36 2.6.1.5 Number of ABVCap Virtual Coordinates . . . . . . 36 2.6.2 Simulation Results on a Network Simulator . . . . . . . . . 37 2.6.2.1 Packet Delivery Rate . . . . . . . . . . . . . . . . . 37 2.6.2.2 Routing Path Length . . . . . . . . . . . . . . . . . 38 vi 2.6.2.3 Number of Broadcasts . . . . . . . . . . . . . . . . 38 2.6.3 Comparison of Virtual-Coordinate-Based Routing . . . . . . 39 3 Virtual-Backbone-Based Routing Protocol inMobile Ad Hoc Net- works 41 3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 The Sufficient Condition . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Construction of Connected K-Hop Dominating Sets . . . . . . . . . 46 3.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Maintenance of Connected K-Hop Dominating Sets . . . . . . . . . 50 3.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Routing Protocol Based on The Connected K-Hop Dominating Set 55 3.6.1 The Routing Protocol . . . . . . . . . . . . . . . . . . . . . 55 3.6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.7 Performance and Complexity Analyses . . . . . . . . . . . . . . . . 56 3.7.1 Expected Size of Connected k-Hop Dominating Set . . . . . 56 3.7.2 Expected Number of Reformation Rounds . . . . . . . . . . 59 3.7.3 Message and Computation Complexities . . . . . . . . . . . 62 3.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 63 3.8.2 Average Size of Connected k-Hop Dominating Set . . . . . . 64 vii 3.8.3 Maintenance Overhead in Random-Walk Mobility Model . . 66 3.8.4 Maintenance Overhead in Gauss-Markov Mobility Model . . 68 4 Conclusions 71 Bibliography 73

    [1] K.M. Alzoubi, P.J. Wan, and O. Frieder, “Distributed Heuristics for Con-
    nected Dominating Sets in Wireless Ad Hoc Networks,” IEEE ComSoc/KICS
    Journal on Communications and Networks, vol. 4, pp. 22–29, 2002.
    [2] K.M. Alzoubi, P.J. Wan, and O. Frieder, “Message-Optimal Connected
    Dominating Sets in Mobile Ad Hoc Networks,” IEEE/ACM MOBIHOC, pp.
    157–164, 2002.
    [3] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe, “Experimental Results for
    and Theoretical Analysis of a Self-Organizing Global Coordinate System for
    Ad Hoc Sensor Networks,” Telecommunication Systems, vol. 26, pp. 213–233,
    2004.
    [4] L. Bao and J. Garcia-Luns-Aceves, “Topology Management in Ad Hoc
    Networks,” IEEE/ACM MOBIHOC, pp. 129–140, 2003.
    [5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with Guaran-
    teed Delivery in Ad Hoc Wireless Networks,” Wireless Networks, vol. 7, pp.
    609–616, 2001.
    [6] J. Bruck, J. Gao, and A. Jiang, “MAP: Medial Axis Based Geometric
    Routing in Sensor Networks,” IEEE/ACM MOBICOM, pp. 88–102, 2005.
    [7] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad
    Hoc Network Research,” Wireless Communications and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and
    Applications, vol. 2, pp. 483–502, 2002.
    [8] J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized Minimum-Energy
    Broadcasting in Ad Hoc Networks,” IEEE INFOCOM, pp. 1702–1712, 2003.
    [9] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS Free Coordinate As-
    signment and Routing in Wireless Sensor Networks,” IEEE INFOCOM, pp.
    150–160, 2005.
    [10] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “SPAN: An
    Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad
    Hoc Wireless Networks,” ACM Wireless Networks Journal, vol. 8, pp. 481–
    494, 2002.
    [11] B.A. Clark, C.J. Colbourn, and D.S. Johnson, “Unit Disk Graphs,” Discrete
    Mathematics, vol. 86, pp. 165–177, 1991.
    [12] F. Dai and J. Wu, “An Extended Localized Algorithm for Connected Dom-
    inating Set Formation in Ad Hoc Wireless Networks,” IEEE Transactions on
    Parallel and Distributed Systens, vol. 53, pp. 908–920, 2004.
    [13] F. Dai and J. Wu, “On Constructing k-Connected k-Dominating Set in
    Wireless Networks,” IEEE IPDPS, pp. 81a, 2005.
    [14] S. Datta, I. Stojmenovic, and J. Wu, “Internal Node and Shortcut Based
    Routing with Guaranteed Delivery in Wireless Networks,” Cluster Comput-
    ing, vol. 5, pp. 169–178, 2002.
    [15] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan,
    “Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and
    Linear-Size Skeletons,” SODA, pp. 717–724, 2003.
    [16] Q. Fang, J. Gao, and L. J. Guibas, “Locating and Bypassing Routing Holes
    in Sensor Networks,” IEEE INFOCOM, pp. 2458–2468, 2004.
    [17] Q. Fang, J. Gao, L. J. Guibas, V. D. Silva, and L. Zhang, “GLIDER:
    Gradient Landmark-Based Distributed Routing for Sensor Networks,” IEEE
    INFOCOM, pp. 339–350, 2005.
    [18] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
    Spanners for Routing in Mobile Networks,” IEEE Journal on Selected Areas
    in Communications, vol. 23, pp. 174–185, 2005.
    [19] S. Guha and S. Khuller, “Approximation Algorithms for Connected Domi-
    nating Sets,” Algorithmica, vol. 20, pp. 374–387, 1998.
    [20] S.K.S. Gupta and P.K. Srimani, “Adaptive Core Selection and Migration
    Method for Multicast Routing in Mobile Ad Hoc Networks,,” IEEE Trans-
    actions on Parallel and Distributed Systems, vol. 14, pp. 27–38, 2003.
    [21] J. Hightower, and G. Borriello, “Location Systems for Ubiquitous Comput-
    ing,” Computer, vol. 34, pp. 57–66, 2001.
    [22] Y. W. Hong, and A. Scaglione, “A Scalable Synchronization Protocol for
    Large Scale Sensor Networks and Its Applications,” IEEE Journal on Selected
    Areas in Communications, vol. 23, pp. 1085–1099, 2005.
    [23] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,
    “Scenario-Based Performance Analysis of Routing Protocols for Mobile Ad
    Hoc Networks,” IEEE/ACM MOBICOM, pp. 195–206, 1999.
    [24] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad HocWireless
    Networks,” Mobil Computing, vol. 353, pp. 153–181, 1996.
    [25] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for
    Wireless Networks,” IEEE/ACM MOBICOM, pp. 243–254, 2000.
    [26] F. Kuha and R. Wattenhofer, “Constant-Time Distributed Dominating Set
    Approximation,” Distributed Computing, vol. 17, pp. 303–310, 2005.
    [27] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric Ad-Hoc
    Routing: of Theory and Practice,” ACM PODC, pp. 63–72, 2003.
    [28] S. Kutten and D. Peleg, “Fast Distributed Construction of k-Dominating
    Sets and Applications,” Journal of Algorithms, vol. 28, pp. 40–66, 1998.
    [29] S. Lee, B. Bhattacharjee, and S. Banerjee, “Efficient Geographic Routing in
    Multihop Wireless Networks,” IEEE/ACM MOBIHOC, pp. 230–241, 2005.
    [30] N. Li, J. C. Hou, and L. Sha, “Design and Analysis of an MST-Based
    Topology Control Algorithm,” IEEE INFOCOM, pp. 2210–2217, 2003.
    [31] J. Li, J. Jannotti, D. DeCouto, D. Karger, and R. Morris, “A Scalable
    Location Service for Geographic Ad-Hoc Routing,” IEEE/ACM MOBICOM,
    pp. 120–130, 2000.
    [32] C.H. Lin, B.H. Liu, H.Y. Yang, C.Y. Kao, and M.J. Tsai “Virtual-
    Coordinate-Based Delivery-Guaranteed Routing Protocol in Wireless Sensor
    Networks with Unidirectional Links,” IEEE INFOCOM, pp. 351–355, 2008.
    [33] Y. Liu, L. M. Ni, and M. Li, “A Geography-Free Routing Protocol for
    Wireless Sensor Networks,” IEEE HPSR, pp. 351–355, 2005.
    [34] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao and L. J. Guibas, “Land-
    mark Selection and Greedy Landmark-Descent Routing for Sensor Networks,”
    IEEE INFOCOM, pp. 661–669, 2007.
    [35] T. Park, and K. G. Shin, “Soft Tamper-Proofing via Program Integrity
    Verification in Wireless Sensor Networks,” IEEE Transactions on Mobile
    Computing, vol. 4, pp. 297–309, 2005.
    [36] P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. Jha, “Node Localization
    Using Mobile Robots in Delay-Tolerant Sensor Networks,” IEEE Transactions
    on Mobile Computing, vol. 4, pp. 285–296, 2005.
    [37] D. Penso and C. Barbosa, “A Distributed Algorithm to Find k-Dominating
    Sets,” Discrete Applied Mathematics, vol. 141, pp. 243–253, 2004.
    [38] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Ge-
    ographic Routing Without Location Information,” IEEE/ACM MOBICOM,
    pp. 96–108, 2003.
    [39] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
    Shenker, “GHT: A Geographic Hash Table for Data-Centric Storage,” ACM
    WSNA, pp. 78–87, 2002.
    [40] H. Sabbineni, and K. Chakrabarty, “Location-Aided Flooding: An Energy-
    Efficient Data Dissemination Protocol for Wireless Sensor Networks,” IEEE
    Transactions on Computers, vol. 54, pp. 36–46, 2005.
    [41] K. Seada, A. Helmy, and R. Govindan, “On the Effect of Localization
    Errors on Geographic Face Routing in Sensor Networks,” IEEE/ACM IPSN,
    pp. 71–80, 2004.
    [42] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization from
    Mere Connectivity,” IEEE/ACM MOBIHOC, pp. 201–212, 2003.
    [43] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing Ad Hoc Routing
    with Dynamic Virtual Infrastructures,” IEEE INFOCOM, pp. 1763–1772,
    2001.
    [44] W. Su, and I. F. Akyildiz, “Time-diffusion Synchronization Protocol for
    Wireless Sensor Networks,” IEEE/ACM Transactions on Networking, vol.
    13, pp. 384–397, 2005.
    [45] M.J. Tsai, F.R. Wang, H.Y. Yang, and Y.P. Cheng, “VirtualFace: An Al-
    gorithm to Guarantee Packet Delivery of Virtual-Coordinate-Based Routing
    Protocols in Wireless Sensor Networks,” accepted by IEEE INFOCOM 2009.
    [46] M.J. Tsai, H.Y. Yang, and W.Q. Huang, “Axis-Based Virtual Coordinate
    Assignment Protocol and Delivery-Guaranteed Routing Protocol in Wireless
    Sensor Networks,” IEEE INFOCOM, pp. 2234–2242, 2007.
    [47] M.J. Tsai, H.Y. Yang, B.H. Liu, and W.Q. Huang, “Virtual-Coordinate-
    Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks,”
    accepted by IEEE/ACM Transactions on Networking.
    [48] Y. C. Tseng, S. Y. Ni, Y. S. Chen, and J. P. Sheu, “The Broadcast
    Storm Problem in a Mobile Ad Hoc Network,” Wireless Networks, vol. 8, pp.
    153–167, 2002.
    [49] J. Wu and H. Li, “A Dominating-Set-Based Routing Scheme in Ad Hoc
    Wireless Networks,” Telecommunication Systems, vol. 18, pp. 13–36, 2001.
    [50] H.Y. Yang, C.H. Lin, and M.J. Tsai, “Distributed Algorithm for Efficient
    Construction and Maintenance of Connected k-Hop Dominating Sets in Mo-
    bile Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 7, pp.
    444–457, 2008.
    [51] S. Yang, J. Wu, and J. Cao, “Connected K-Hop Clustering in Ad Hoc
    Networks,” IEEE ICPP, pp. 373–380, 2005.
    [52] C.W. Yu and L.H. Yen, “Computing Subgraph Probability of Random
    Geometric Graphs: Quantitative Analysis of Wireless Ad Hoc Networks,”
    FORTE, pp. 458–472, 2005.
    [53] Y. Zhao, Y. Chen, B. Li, and Q. Zhang, “Hop ID: A Virtual Coordinate
    Based Routing for Sparse Mobile Ad Hoc Networks,” IEEE Transactions on
    Mobile Computing, vol. 6, pp. 1075–1089, 2007.
    [54] Y. Zou, and K. Chakrabarty, “A Distributed Coverage-And Connectivity-
    Centric Technique for Selecting Active Nodes in Wireless Sensor Networks,”
    IEEE Transactions on Computers, vol. 54, pp. 978–991, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE