研究生: |
阮彙權 Juan, Hui-Chuan |
---|---|
論文名稱: |
鋰離子電池參數估算方法之研究 A Study on Parameters Estimation of Li-ion Battery |
指導教授: |
鐘太郎
Jong, Tai-Lang 施武陽 Sean, Wu-Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 206 |
中文關鍵詞: | 鋰離子電池模型 、擴展式卡門濾波器 、適應性觀測器 、參數萃取 、純電動車 |
外文關鍵詞: | Li-ion Battery Model, Extended Kalman Filter, Adaptive Observer, Parameter Extraction, Electric Vehicle |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電池在近代的工程科技發展上,扮演了重要的角色,而因為電池的特性,也使其在數十年來廣泛地被運用在電子電路或機電相關的系統上,而為了要能有效地使用電池,管理與監控電池的使用情形就越顯重要,如電池的老化情形等,種種現象將會反映在電池的許多參數上,故必須萃取電池內部參數,如:電池內部阻抗等,以進一步強化後端系統之設計,而電池參數的萃取方式又可以分為兩種:線上方式與離線方式,本論文即是針對線上之電池估算方式加以研究。
本論文主要討論鋰離子電池的參數估算方式,首先在Simulink環境中建立所需使用之多種鋰離子電池模型,並再對其進行驗證,證實電池模型可與實測數據吻合,間接證明其模型正確性。並且使用所建立之電池模型,運用在不同的負載上進行一系列之系統化模擬,使用之模型包含簡化型電池模型,至更為接近真實電池狀態之完整鋰離子電池模型。
在電池參數估算方法方面,將對兩種參數估算方法做模擬與比較,分別為適應性觀測器法(Adaptive Observer)以及擴展式卡門濾波器(Extended Kalman Filter,EKF)估算法,對系統之參數與狀態進行估算,希望能藉由此兩種參數估算方法,再配合完整之系統化模擬,觀察系統的整體參數估算情形。
模擬情形包含使用不同型態之負載,觀察負載變化情形對估算結果之影響,除此之外,因考慮將此估算方法實用於純電動車(Electric Vehicle, EV)中,故又再設計一隨機變化之負載,進而貼近一般電動車的行車充放電使用情形。
而對於適應性觀測器估算方法,我們也將使用不同之數值方法進行離散化並加以比較,進而加強實作上的應用,最後,本論文將電池參數估算方法作結論並討論未來之發展。
Battery plays a crucial role in nowadays technology and is extensively used in electrical and electronic systems. In order to utilize battery efficiently and optimally, it is important to be able to provide good control and management functions of the battery while it is in use or charging. Most of those functions are based on the battery operational characteristics as well as accurate measurements or estimations of battery status and/or parameters. For example, parameters such as battery internal resistance could reflect battery status which is very significant information for battery management system. Therefore, it is important that battery parameters can be measured or estimated by different approaches either on-line or off-line.
The main focus of this thesis is to investigate and compare two different on-line methods for estimating battery parameters. One is the adaptive observer for dynamical estimation, and the other is the extended Kalman filter for state and parameters estimation. We first carefully examine the derivations and build Matlab simulation programs of the two methods, respectively, and then design and perform a series of systematic simulations for these two methods to study their advantages and disadvantages in battery parameter estimation.
Moreover, we also build three Li-ion battery models in Simulink for the aforementioned series of systematic simulations. The battery models can simulate dynamic battery characteristics in Simulink environment under different battery simplification assumptions. These models also can be used for various simulations in different system design applications, e.g., electric vehicle or power system design. By using these Li-ion models, system designers could have a much more accurate simulation result for their systems.
[1] D. Linden and T. B. Reddy, “Handbook of Batteries, McGraw-Hill, 3rd ed. New York: McGraw-Hill,” 2002.
[2] 李世興, “電池活用手冊,” 全華出版社, 民國85年
[3] 黃可龍、王兆翔、劉素琴、馬振基, “鋰離子電池原理與技術,” 五南出版社, 民國99年
[4] 工研院電子報第9810期: http://edm.itri.org.tw/enews/epaper/9810/d01.htm
[5] F. Codecà, S. M. Savaresi and Vincenzo Manzoni, “The mix estimation algorithm for battery State-of-Charge estimator– Analysis of the sensitivity to measurement errors,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, pp. 8083-8088, December 16-18, 2009.
[6] M. Chen and G. Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, Vol. 21, pp. 504-511, 2006.
[7] G. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification,” Journal of Power Sources, Vol. 134, pp. 262-276, 2004.
[8] R. Spotnitz, “Simulation of capacity fade in lithium-ion batteries,” Journal of Power Sources, Vol. 113, pp. 72-80, 2003.
[9] Electropaedia, Energy Sources and Energy Storage, Battery and Energy Encyclopaedia and History of Technology, http://www.mpoweruk.com/index.htm.
[10] S. S. Zhang, K. Xu and T. R. Jow, “Study of the charging process of a LiCoO2-based Li-ion battery,” Journal of Power Sources, Vol. 160, pp. 1349-1354, 2006.
[11] S.S. Zhang , K. Xu, T.R. Jow, “Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery” , Journal of Power Sources, Vol. 160, pp. 1403-1309, 2006.
[12] V. Boovaragavan, S. Harinipriya, and V. R. Subramanian, “Towards real-time (milliseconds) parameter estimation of lithum-ion batteries using reformulated physics-based models” Journal of Power Sources, Vol. 183, pp. 361–365, Feb, 2008.
[13] J. Newman, K. E. Thomas, H. Hafezi, and D. R. Wheeler, “Modeling of lithium-ion batteries,” Journal of Power Sources, Vol. 119–121, pp. 838–843, Jun. 2003.
[14] C. F. Chiasserini and R. R. Rao, “Energy efficient battery management,” IEEE Journal on Selected Areas Communications, Vol. 19, Issue. 7, pp. 1235–1245, July, 2001.
[15] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “A model for battery lifetime analysis for organizing applications on a pocket computer,” IEEE Transactions VLSI System, Vol. 11, Issue. 6, pp. 1019–1030, December, 2003.
[16] L. Benini, G. Castelli, A. Macci, E. Macci, M. Poncino, and R. Scarsi,“Discrete-time battery models for system-level low-power design,” IEEE Transactions VLSI System, Vol. 9, Issue. 5, pp. 630–640, October, 2001.
[17] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, Issue. 3, pp. 495–505, September, 2002.
[18] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Transactions on Instrumentation and Measurement, Vol. 52, Issue 4, pp. 1087–1091, August, 2003.
[19] Yi-Hsien Chiang, and Wu-Yang Sean, “Dynamical Estimation of State-of-Health of Batteries by Using Adaptive Observer,” 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Vol. 1, pp. 110~115, 19~20 December, 2009.
[20] J. H. Lee, and N. L. Ricker, “Extended Kalman Filter Based Nonlinear Model Predictive Control,” Industrial and Engineering Chemistry Research, Vol. 33, pp. 1530-154, 1994.
[21] D. Haifeng, W. Xuezhe, and S. Zechang, “State and Parameter Estimation of a HEV Li-ion Battery Pack Using Adaptive Kalman Filter with a New SOC-OCV Concept,” IEEE 2009 International Conference on Measuring Technology and Mechatronics Automation, Vol. 2, pp. 375~380, 11~12 April, 2009.
[22] A. P. Sage, G. W. Husa, “Adaptive Filtering with Unknown Prior Statistics,” Proceedings of Joint Automatic Control Conference, pp. 760-769, 1969.
[23] 賴世榮, 陳遵立, ”智慧型鋰離子電池殘存電量估測之研究,” 國立中山大學, 民國93年10月.
[24] 張瓊仁, 陳遵立, “鎳氫電池電容量管理之研究” , 國立中山大學, 民國94年7月.
[25] 王伯崴, 王榮泰, “機器人之智慧型充電站與電源管理,” 國立成功大學, 民國97年9月
[26] 洪裕桓, 陳遵立, “智慧型鋰電池管理系統之研製,” 國立中山大學, 民國94年6月.
[27] 黃聖欽, 徐國鎧, “具準確電量估測之鉛酸電池快速充電系統,” 國立中央大學, 民國93年7月.
[28] S. Abu-Sharkh and D. Doerffel, “Rapid test and non-linear model characterization of solid-state lithium-ion batteries,” Journal of Power Sources, Vol. 130, pp. 266–274, 2004.
[29] M. C. Knauff, and H. G. Kwatny, “Simulink Model for Hybrid Power System Test-bed,” IEEE Electric Ship Technologies Symposium, pp. 421~427, 21~23 May, 2007.
[30] M. C. Glass, “Battery Electrochemical Nonlinear/Dynamic SPICE Model,” Proceedings of Energy Conversion Engineering Conference, Vol. 1, pp. 292~297, 1996.
[31] Sean Gold, “A PSPICE Macromodel for Lithium-Ion Batteries,” Proceedings of 12th Annual Battery Conference Applications and Advances, pp. 215~222, 1997.
[32] H. L. Chen, and D. Sutanto, “A New Battery Model for use with Battery Energy Storage Systems and Electric Vehicles Power Systems,” Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, pp. 470–475, 23–27 January, 2000.
[33] S. Ibaraki, S. Suryanarayanan, and M. Tomizuka, “Design of Luenberger State Observers Using Fixed-Structure Optimization and its Application to Fault Detection in Lane-Keeping Control of Automated Vehicles,” IEEE/ASME Transactions on Mechatronics, Vol. 10, Issue 1, pp. 34~42, Feb, 2005.
[34] C. Kravaris, “Modular Design of Nonlinear Observer for State and Disturbance Estimation,” Proceedings of the 45th IEEE Conf. on Decision and Control, San Diego, CA, USA, pp. 13~15, December, 2006.
[35] P. K. NANDAM, and P. C. SEN, “A Comparative Study of a Luenberger Observer and Adaptive Observer-Based Variable Structure Speed Control System Using a Self-Controlled Synchronous Motor,” IEEE Transactions on Industrial Electronics, Vol. 37, Issue 2, pp. 127~132, April, 1990.
[36] P. V. O'Neil, "Advanced Engineering Mathematics,” 5/e, Thomson Brooks/Cole.
[37] M. S. Grewal, and A. P. Andrews “Applications of Kalman Filtering in Aerospace 1960 to the Present,” IEEE Control System Magazine, Vol. 30, Issue 3, pp. 69~78, June 2010.
[38] C. E. Hutchinson, “The Kalman Filter Applied Aerospace and Electronic Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-20, Issue 4, pp. 500~504, 30 April, 2008.
[39] P. Vergez, L. Sauter, and S. Dahlke, “An Improved Kalman Filter for Satellite Orbit Predictions,” The Journal of Astronautical Sciences, Vol. 52, No. 3, July~ September, 2004.
[40] H. E. Soken, and C. hajiyev, “Adaptive unscented Kalman Filter with Multiple Fading Factors for Pico Satellites Attitude Estimation,” IEEE 2009 4th International Conference on Recent Advances in Space Technologies, pp. 541~546, 11~13 June, 2009.
[41] Y. Shi, C. Han, and Y. Liang, “Adaptive UKF for Target Tracking with Unknown Process Noise Statistics,” IEEE 12th International Conf. on Information Fusion, pp. 1815~1820, Seattle WA, USA, July 6~9 2009.
[42] C. Chen, H. Yang, H. Jiang, J. Fan, C. Han, and Y. Ding, “Mitigation of Turbulence-Induced Scintillation Noise in Free-Space Optical Communication Links Using Kalman Filter,” IEEE 2008 Congress on Image and Signal Processing, Vol. 5, pp. 470~473, 2008.
[43] M. St-Pierre, and D. Gingras, “Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system,” IEEE 2004 Intelligent Vehicles Symposium, pp. 831~835, 8 October, 2004.
[44] Y. Hao, Z. Xiong, F. Sun, and X. Wang, “Comparison of Unscented Kalman Filters,” IEEE 2007 International Conference On Mechatronics and Automation, pp. 895~899, 2007.
[45] R. G. Brown and P.Y.C. Hwang, “Introduction to Random Signals and Applied Kalman Filtering,” John Wiley, New York, 1983.
[46] G. Welch, and G. Bishop ," An introduction to the Kalman filter," University of North Carolina at Chapel Hill, TR 59-041, July, 2006.
[47] G. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3. State and Parameter Estimation,” Journal of Power Sources, Vol. 134, Issue 2, pp. 277-292, Feb. 2004.
[48] G. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1. Background,” Journal of Power Sources, Vol. 134, Issue 2, pp. 252-261, Feb. 2004.