研究生: |
李淂裕 Lee, Te-Yu |
---|---|
論文名稱: |
針對系統面板應用之低溫多晶矽薄膜電晶體之設計與特性分析 Design and Analysis of LTPS TFTs for SOP Applications |
指導教授: |
金雅琴
King, Ya-Chin 林崇榮 Lin, Chrong-Jung |
口試委員: |
鄭晃忠
金雅琴 林崇榮 葉永輝 丁初稷 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 低溫多晶矽薄膜電晶體 、金屬-氮化物-氧化物-矽 、一次編程唯讀記憶體 、有機發光二極體 、系統面板 |
外文關鍵詞: | LTPS TFT, MNOS, OTP, OLED, SOP |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低溫多晶矽薄膜電晶體可謂當今最重要的移動裝置顯示技術;由於優越的元件特性,主動矩陣低溫多晶矽薄膜電晶體顯示器提供高亮度、高效率、廣視角和高對比度;加上支援動態影像所需的快速響應、超薄模組、低功耗與低製造成本的優勢,更進一步滿足可攜式電子產品的需求。
然而,應用在行動設備上,低溫多晶矽薄膜電晶體技術仍然面臨著許多挑戰才能臻至理想,例如高解析度面板,系統面板與具可撓式之面板技術。
在本篇論文中,透過對低溫多晶矽薄膜電晶體的研究,更可以確定其在移動裝置應用之優勢。在高解析度液晶顯示器應用上,低溫多晶矽薄膜電晶體漏電流可經由多晶矽晶粒結構突起引發的區域性正電荷注入獲得壓抑。在高強度背光源的面板應用上,採用非對稱遮蔽閘與環狀遮蔽閘的低溫多晶矽薄膜電晶體除了有效降低光漏電流,更能降低浮動遮蔽閘引起的汲極導通。在系統面板的應用上,成功地使用傳統低溫多晶矽薄膜電晶體製程實現了超過三個數量級的讀取電流差且具有快速寫入與高抗讀取干擾特性的金屬-氮化物-氧化物-矽(MNOS)一次編程唯讀記憶體(OTP)及可靠的資料儲存能力。在高解析度有機發光二極體面板的應用上,發展出有效率的嵌入式畫素電流提升技術並且成功地改善2.4吋2T1C有機發光二極體面板的亮度不均性,其亮度不均的改善可由8.1%降至4.9%。此技術除了有效地改善亮度不均性亦可避免複雜的畫素補償電路和外加記憶體,製程上更具備與現有低溫多晶矽薄膜電晶體製程完全相容的低成本優勢。
Currently, LTPS TFTs are the most important display technology of mobile devices. Owing to the superior device characteristics, active-matrix driven LTPS TFT displays offer high brightness, high efficiency, wide viewing angle and high contrast ratio. Fast response time for moving images, ultra-thin module, low-power consumption, and low fabrication cost further fulfill the needs of portable electronics.
However, LTPS TFT technology still faces many challenges in realizing the ideal display in mobile applications such as high resolution, integrated circuitry and flexible display.
In this dissertation, reliability challenges of LTPS TFT technology for state-of-art mobile applications are investigated. For the high resolution liquid crystal displays, the average off-state leakage current of LTPS TFTs can be effectively suppressed by grain protrusion assisted localized FN operation. Under the increasing backlight system, asymmetric shielding gates as well as surround gate structure are proven to alleviate the drain turn-on effect caused by these floating bottom gates. For SOP applications, fully LTPS panel process compatible MNOS OTP cell with three-order read current difference, fast program efficiency, good data retention characteristics and high disturb immunity is demonstrated. For the high resolution AMOLED displays, efficient blanket boosting scheme is successfully applied to a 2.4-inch 2T1C AMOLED panel with illumination non-uniformity improving from 8.1% to 4.9%. This highly efficient trimming method can achieve uniform drive current without any additional compensation circuitry or external memory and fully compatible to current LTPS backplane for AMOLED display.
[1] M. Morimoto, "Trends of marketing and technology in TFT-LCD," in Electronics Manufacturing Technology Symposium, 1994. Low-Cost Manufacturing Technologies for Tomorrow's Global Economy. Proceedings 1994 IEMT Symposium., Sixteenth IEEE/CPMT International, 1994, pp. 384-386 vol.1.
[2] T. P. Brody, "When — If ever — Will the CRT be replaced by a flat display panel?," Microelectronics Journal, vol. 11, pp. 5-9, 5// 1980.
[3] M. Catelani, L. Ciani, L. Signorini, and G. Barile, "TFT-LCD for avionics applications: development, characterization and reliability analysis," in Instrumentation and Measurement Technology Conference (I2MTC), 2010 IEEE, 2010, pp. 647-651.
[4] Y. Ishii, "The World of Liquid-Crystal Display TVs - Past, Present, and Future," Display Technology, Journal of, vol. 3, pp. 351-360, 2007.
[5] D. E. Mentley, "State of flat-panel display technology and future trends," Proceedings of the IEEE, vol. 90, pp. 453-459, 2002.
[6] Y.-M. Tsai, D.-Z. Peng, C.-W. Lin, C.-H. Tseng, S.-C. Chang, P.-Y. Lu, et al., "40.2: Invited Paper: LTPS and AMOLED Technologies for Mobile Displays," in SID Symposium Digest of Technical Papers, 2006, pp. 1451-1454.
[7] Z. Yuhua and Z. Tong, "3D Multi-view Autostereoscopic Display and Its Key Technologie," in Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on, 2009, pp. 31-35.
[8] N. Aoki, "16.3: Invited Paper: Advanced IPS Technology for Mobile Applications," in SID Symposium Digest of Technical Papers, 2006, pp. 1087-1090.
[9] H. Kawamoto, "The history of liquid-crystal displays," Proceedings of the IEEE, vol. 90, pp. 460-500, 2002.
[10] Y.-J. Chiu, H.-C. Chen, G.-H. Tzeng, and J. Z. Shyu, "Marketing strategy based on customer behaviour for the LCD-TV," International Journal of Management and Decision Making, vol. 7, pp. 143-165, 01/01/ 2006.
[11] C. T. Liu, "Revolution of the TFT LCD Technology," Display Technology, Journal of, vol. 3, pp. 342-350, 2007.
[12] S.-W. Hung, J.-M. Tsai, M.-J. Cheng, and P.-C. Chen, "Analysis of the development strategy of late-entrants in Taiwan and Korea’s TFT-LCD industry," Technology in Society, vol. 34, pp. 9-22, 2// 2012.
[13] T. L. Credelle, "Thin-film transistors for video applications," in Display Research Conference, 1988., Conference Record of the 1988 International, 1988, pp. 208-214.
[14] J. Jang, "TFT Technologies for Large Area Electronics," ECS Transactions, vol. 8, pp. 39-43, July 20, 2007 2007.
[15] H. Ohshima and M. Führen, "46.2: Invited Paper: High-Performance LTPS Technologies for Advanced Mobile Display Applications," in SID Symposium Digest of Technical Papers, 2007, pp. 1482-1485.
[16] A. Carroll and G. Heiser, "An analysis of power consumption in a smartphone," in Proceedings of the 2010 USENIX conference on USENIX annual technical conference, 2010, pp. 21-21.
[17] K. Yoneda, R. Yokoyama, and T. Yamada, "Development trends of LTPS TFT LCDs for mobile applications," in VLSI Circuits, 2001. Digest of Technical Papers. 2001 Symposium on, 2001, pp. 85-90.
[18] P. K. Weimer, "The TFT - A New Thin-Film Transistor," Proceedings of the IRE, vol. 50, pp. 1462-1469, 1962.
[19] Y. Ukai, "TFT-LCD manufacturing technology - current status and future prospect -," in Physics of Semiconductor Devices, 2007. IWPSD 2007. International Workshop on, 2007, pp. 29-34.
[20] J. R. Woodyard, D. R. Bowen, J. Gonzalez-Hernandez, S. Lee, D. Martin, and R. Tsu, "Dehydrogenation studies of amorphous silicon," Journal of Applied Physics, vol. 57, p. 2243, 1985.
[21] R. Ishihara, W.-C. Yeh, T. Hattori, and M. Matsumura, "Effects of light pulse duration on excimer-laser crystallization characteristics of silicon thin films," Japanese Journal of Applied Physics, vol. 34, pp. 1759-1764, 1995.
[22] T. Sameshima, S. Usui, and M. Sekiya, "XeCl Excimer laser annealing used in the fabrication of poly-Si TFT's," Electron Device Letters, IEEE, vol. 7, pp. 276-278, 1986.
[23] H. Kuriyama, "Excimer laser crystallization of silicon films for AMLCDs," in Active Matrix Liquid Crystal Displays, 1995. AMLCDs '95., Second International Workshop on, 1995, pp. 87-92.
[24] S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Gowers, "Excimer-laser-annealed poly-Si thin-film transistors," Electron Devices, IEEE Transactions on, vol. 40, pp. 407-413, 1993.
[25] T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, et al., "Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor," Japanese Journal of Applied Physics, vol. 30, pp. 3700-3703, 1991.
[26] S. Higashi, D. Abe, Y. Hiroshima, K. Miyashita, T. Kawamura, S. Inoue, et al., "High-quality SiO2/Si interface formation and its application to fabrication of low-temperature-processed polycrystalline Si thin-film transistor," Japanese Journal of Applied Physics, vol. 41, p. 3646, 2002.
[27] Y. Uchida, H. Kanoh, O. Sugiura, and M. Matsumura, "Hydrogen-Radical Annealing of Chemical Vapor-Deposited Amorphous Silicon Films," Japanese Journal of Applied Physics, vol. 29, 1990.
[28] D. Abe, S. Inoue, and T. Shimoda, "High-Performance Polycrystalline Silicon Thin-Film Transistors with Low Trap Density at the Gate-SiO2/Si Interface Fabricated by Low-Temperature Process," Japanese Journal of Applied Physics, vol. 45, p. 9066, 2006.
[29] T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, "Low-temperature fabrication of high-mobility poly-Si TFTs for large-area LCDs," Electron Devices, IEEE Transactions on, vol. 36, pp. 1929-1933, 1989.
[30] E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto, et al., "A laser-recrystallization technique for silicon-TFT integrated circuits on quartz substrates and its application to small-size monolithic active-matrix LCD's," Electron Devices, IEEE Transactions on, vol. 37, pp. 121-127, 1990.
[31] A. Kumar and A. Nathan, "Can a-Si meet requirements of AMOLED backplanes," in Lasers and Electro-Optics Society, 2004. LEOS 2004. The 17th Annual Meeting of the IEEE, 2004, pp. 184-185 Vol.1.
[32] A. Dodabalapur and J. Kido, "Special issue on organic and polymeric active devices," Electron Devices, IEEE Transactions on, vol. 44, pp. 1186-1187, 1997.
[33] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, "Achieving full-color organic light-emitting devices for lightweight, flat-panel displays," Electron Devices, IEEE Transactions on, vol. 44, pp. 1188-1203, 1997.
[34] K. Suzuki, "Past and future technologies of information displays," in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 16-21.
[35] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 4, pp. 83-99, 1998.
[36] F. Pschenitza, M. H. Lu, and J. C. Strum, "P48: Pattering of OLED Cathodes by Metal Dry Etching," in SID Symposium Digest of Technical Papers, 2001, pp. 731-733.
[37] A. Nakamura, F. Emoto, E. Fujii, A. Yamamoto, Y. Uemoto, K. Senda, et al., "Analysis of solid phase crystallization in amorphized polycrystalline Si films on quartz substrates," Journal of Applied Physics, vol. 66, p. 4248, 1989.
[38] T. Noma, T. Yonehara, and H. Kumomi, "Crystal forms by solid-state recrystallization of amorphous Si films on SiO2," Applied Physics Letters, vol. 59, pp. 653-655, 08/05/ 1991.
[39] N. Yamauchi and R. Reif, "Polycrystalline silicon thin films processed with silicon ion implantation and subsequent solid-phase crystallization: Theory, experiments, and thin-film transistor applications," Journal of Applied Physics, vol. 75, p. 3235, 1994.
[40] V. Subramanian, P. Dankoski, L. Degertekin, B. T. Khuri-Yakub, and K. C. Saraswat, "Controlled two-step solid-phase crystallization for high-performance polysilicon TFT's," Electron Device Letters, IEEE, vol. 18, pp. 378-381, 1997.
[41] X.-Z. Bo, N. Yao, S. R. Shieh, T. S. Duffy, and J. C. Sturm, "Large-grain polycrystalline silicon films with low intragranular defect density by low-temperature solid-phase crystallization without underlying oxide," Journal of Applied Physics, vol. 91, p. 2910, 2002.
[42] B. Dong Kim, H. Jung, G.-B. Kim, and S.-K. Joo, "Solid phase crystallization of amorphous silicon on glass by thin film heater for thin film transistor (TFT) application," Microelectronics Journal, vol. 34, pp. 767-771, 9// 2003.
[43] P. Stradins, D. L. Young, Y. Yan, E. Iwaniczko, Y. Xu, R. C. Reedy, et al., "Real-time optical spectroscopy study of solid-phase crystallization in hydrogenated amorphous silicon," Applied Physics Letters, vol. 89, p. 121921, 2006.
[44] L. Seok-Woon and J. Seung-Ki, "Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization," Electron Device Letters, IEEE, vol. 17, pp. 160-162, 1996.
[45] G. A. Bhat, Z. Jin, H. S. Kwok, and W. Man, "The effects of MIC/MILC interface on the performance of MILC-TFTs," in Device Research Conference Digest, 1998. 56th Annual, 1998, pp. 110-111.
[46] W. Mingxiang and W. Man, "Characterization of an individual grain boundary in metal-induced laterally crystallized polycrystalline silicon thin-film devices," Electron Devices, IEEE Transactions on, vol. 48, pp. 1655-1660, 2001.
[47] S.-H. Choi, Y.-G. Yoon, and S.-K. Joo, "Effect of Pd Additive on Ni-MILC Behavior," Electronic Materials Letters, vol. 1, pp. 103-106, 2005.
[48] D. H. Shin and H.-J. Kim, "Development of rapid thermal processor for large-glass LTPS production," Journal of the Society for Information Display, vol. 15, pp. 293-296, 2007.
[49] K. Hoi Sing, W. Man, Z. Shuyun, and M. Zhiguo, "Metal induced continuous grain polycrystalline silicon thin film transistors," in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 970-973.
[50] T. I. Cox, V. G. I. Deshmukh, J. R. Hill, H. C. Webber, N. G. Chew, and A. G. Cullis, "Electrical and structural properties of pulse laser-annealed polycrystalline silicon films," Electron Devices, IEEE Transactions on, vol. 30, pp. 737-744, 1983.
[51] T. Sameshima, M. Hara, and S. Usui, "XeCl excimer laser annealing used to fabricate poly-Si TFT's," Japanese Journal of Applied Physics, vol. 28, pp. 1789-1793, 1989.
[52] A. Kohno, T. Sameshima, N. Sano, M. Sekiya, and M. Hara, "High performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing," Electron Devices, IEEE Transactions on, vol. 42, pp. 251-257, 1995.
[53] O. Chang-Ho and M. Matsumura, "A proposed single grain-boundary thin-film transistor," Electron Device Letters, IEEE, vol. 22, pp. 20-22, 2001.
[54] J.-H. Jeon, M.-C. Lee, K.-C. Park, and H. Min-Koo, "A new polycrystalline silicon TFT with a single grain boundary in the channel," Electron Device Letters, IEEE, vol. 22, pp. 429-431, 2001.
[55] C.-H. Tu, T.-C. Chang, P.-T. Liu, Y. Che-Yu, L.-W. Feng, C.-C. Tsai, et al., "Improved Performance of F-Ions-Implanted Poly-Si Thin-Film Transistors Using Solid Phase Crystallization and Excimer Laser Crystallization," Display Technology, Journal of, vol. 3, pp. 45-51, 2007.
[56] C. A. Dimitriadis and D. H. Tassis, "Output characteristics of short-channel polycrystalline silicon thin-film transistors," Journal of Applied Physics, vol. 77, pp. 2177-2183, 03/01/ 1995.
[57] K. R. Olasupo and M. K. Hatalis, "Leakage current mechanism in sub-micron polysilicon thin-film transistors," Electron Devices, IEEE Transactions on, vol. 43, pp. 1218-1223, 1996.
[58] F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, "Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors," Electron Device Letters, IEEE, vol. 22, pp. 74-76, 2001.
[59] S. D. Wang, T. Y. Chang, W. H. Lo, J. Y. Sang, and T. F. Lei, "Drain/gate-voltage-dependent on-current and off-current instabilities in polycrystalline silicon thin-film transistors under electrical stress," Japanese Journal of Applied Physics, vol. 44, p. 6435, 2005.
[60] S. Inoue, S. Takenaka, and T. Shimoda, "Study of degradation phenomenon due to a combination of contamination and self-heating in poly-Si thin film transistors fabricated by a low-temperature process," Japanese Journal of Applied Physics, vol. 42, pp. 4213-4217, 2003.
[61] J. L. Sanford and F. R. Libsch, "4.2: TFT AMOLED Pixel Circuits and Driving Methods," in SID Symposium Digest of Technical Papers, 2003, pp. 10-13.
[62] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, et al., "24.4L: Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC)," in SID Symposium Digest of Technical Papers, 2001, pp. 384-387.
[63] C. Kyuha, H. Mun Pyo, K. Chi Woo, and K. Innum, "Needs and solutions of future flat panel display for information technology industry," in Electron Devices Meeting, 2002. IEDM '02. International, 2002, pp. 385-388.
[64] S. Morozumi, K. Oguchi, and H. Ohshima, "Latest Developments In Liquid Crystal Television Displays," Optical Engineering, vol. 23, pp. 241-0, 1984.
[65] H. Ohshima and S. Morozumi, "Future trends for TFT integrated circuits on glass substrates," in Electron Devices Meeting, 1989. IEDM '89. Technical Digest., International, 1989, pp. 157-160.
[66] T. Uchida, "Present and future trend of electron device technology in flat panel display," in Electron Devices Meeting, 1991. IEDM '91. Technical Digest., International, 1991, pp. 5-10.
[67] J. C. Hwang, "Advanced low-cost bare-die packaging technology for liquid crystal displays," Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 18, pp. 458-461, 1995.
[68] Y. Eno, K. Masumo, M. Kunigita, M. Akatsuka, and M. Yuki, "Low-leakage current polysilicon TFTs for LCD pixel addressing," in Display Research Conference, 1991., Conference Record of the 1991 International, 1991, pp. 203-206.
[69] J. Meizi and S.-T. Wu, "Sunlight Readable Fast-Response Transflective LCDs by Horizontal Electric Fields," Display Technology, Journal of, vol. 6, pp. 163-165, 2010.
[70] J. R. Ayres, S. D. Brotherton, I. R. Clarence, and P. J. Dobson, "Photocurrents in poly-Si TFTs," Circuits, Devices and Systems, IEE Proceedings -, vol. 141, pp. 27-32, 1994.
[71] C. Jong Hyun, K. Chang Soo, L. Byung Cheon, and J. Jin, "A novel thin film transistor using double amorphous silicon active layer," Electron Devices, IEEE Transactions on, vol. 45, pp. 2074-2076, 1998.
[72] Y. J. Choi, B. C. Lim, I. K. Woo, J. I. Ryu, and J. Jang, "Low photo-leakage current amorphous silicon thin film transistor with a thin active layer," Journal of Non-Crystalline Solids, vol. 266, pp. 1299-1303, 2000.
[73] M. Wang, T. Chang, P.-T. Liu, S. Tsao, and J. Chen, "Photo-leakage-current characteristic of F incorporated hydrogenated amorphous silicon thin film transistor," Applied physics letters, vol. 90, pp. 192114-192114-3, 2007.
[74] S. J. Hong, S. J. Kwon, and E. S. Cho, "Effects of Spectral Characteristics of Backlight Sources on Photo-Leakage Currents of Hydrogenated Amorphous Silicon Thin Film Transistor," Japanese Journal of Applied Physics, vol. 47, p. 6974, 2008.
[75] D. N. Yaung, Y. K. Fang, C. H. Chen, C. C. Hung, F. C. Tsao, S. G. Wuu, et al., "To suppress photoexcited current of hydrogenated polysilicon TFTs with low temperature oxidation of polychannel," Electron Device Letters, IEEE, vol. 22, pp. 23-25, 2001.
[76] K. Kobayashi and Y. Niwano, "Photo-leakage current of poly-Si thin film transistors with offset and lightly doped drain structure," Japanese Journal of Applied Physics, vol. 38, p. 5757, 1999.
[77] H.-Y. Lu, T.-C. Chang, P.-T. Liu, H.-W. Li, C.-W. Hu, K.-C. Lin, et al., "Reduction of photoleakage current in polycrystalline silicon thin-film transistor using NH3 plasma treatment on buffer layer," Applied Physics Letters, vol. 92, pp. 153507-153507-3, 2008.
[78] T. Ya-Hsiang, K. Yan-Fu, and S. Guo-Pei, "An Empirical Defect-Related Photo Leakage Current Model for LTPS TFTs Based on the Unit Lux Current," Electron Devices, IEEE Transactions on, vol. 57, pp. 1015-1022, 2010.
[79] C.-S. Lin, Y.-C. Chen, T.-C. Chang, H.-W. Li, W.-C. Hsu, S.-C. Chen, et al., "Degradation of low temperature polycrystalline silicon thin film transistors under negative bias temperature instability stress with illumination effect," Journal of The Electrochemical Society, vol. 157, pp. J29-J33, 2010.
[80] H.-Y. Lu, T.-C. Chang, P.-T. Liu, H.-W. Li, C.-W. Hu, K.-C. Lin, et al., "Elimination of photoleakage current in poly-Si TFTs using a metal-shielding structure," Electrochemical and Solid-State Letters, vol. 11, pp. J34-J36, 2008.
[81] M. Lenzlinger and E. Snow, "Fowler‐Nordheim Tunneling into Thermally Grown SiO2," Journal of Applied Physics, vol. 40, pp. 278-283, 1969.
[82] A. Marmorstein, A. T. Voutsas, and R. Solanki, "A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films," Journal of Applied Physics, vol. 82, pp. 4303-4309, 1997.
[83] A. Waxman, V. E. Henrich, F. V. Shallcross, H. Borkan, and P. K. Weimer, "Electron Mobility Studies in Surface Space-Charge Layers in Vapor-Deposited CdS Films," Journal of Applied Physics, vol. 36, p. 168, 1965.
[84] R. Ahrons, "Industrial Research in Microcircuitry at RCA: The Early Years, 1953-1963," Annals of the History of Computing, IEEE, vol. 34, pp. 60-73, 2012.
[85] B. Lechner, F. Marlowe, E. Nester, and J. Tults, "Liquid crystal matrix displays," in Solid-State Circuits Conference. Digest of Technical Papers. 1969 IEEE International, 1969, pp. 52-53.
[86] B. J. Lechner, F. J. Marlowe, E. O. Nester, and J. Tults, "Liquid crystal matrix displays," Proceedings of the IEEE, vol. 59, pp. 1566-1579, 1971.
[87] T. P. Brody, J. A. Asars, and G. D. Dixon, "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel," Electron Devices, IEEE Transactions on, vol. 20, pp. 995-1001, 1973.
[88] T. P. Brody, L. Fang-Chen, Z. P. Szepesi, and D. H. Davies, "A 6 × 6-in 20-lpi electroluminescent display panel," Electron Devices, IEEE Transactions on, vol. 22, pp. 739-748, 1975.
[89] T. P. Brody, "The thin film transistor - A late flowering bloom," Electron Devices, IEEE Transactions on, vol. 31, pp. 1614-1628, 1984.
[90] A. I. Lakatos, "Promise and challenge of thin-film silicon approaches to active matrices," Electron Devices, IEEE Transactions on, vol. 30, pp. 525-532, 1983.
[91] Y. Yamamoto, "Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future," Japanese Journal of Applied Physics, vol. 51, p. 0001, 2012.
[92] Y. Nakajima, Y. Kida, M. Murase, Y. Toyoshima, and Y. Maki, "Latest developments for “system-on-glass” displays using low-temperature poly-Si TFTs," Journal of the Society for Information Display, vol. 12, pp. 361-365, 2004.
[93] S. Koyama, "A novel cell structure for giga-bit EPROMs and flash memories using polysilicon thin film transistors," in VLSI Technology, 1992. Digest of Technical Papers. 1992 Symposium on, 1992, pp. 44-45.
[94] K. Ya-Chin, K. Tsu-Jae, and H. Chenming, "MOS memory using germanium nanocrystals formed by thermal oxidation of Si/sub 1-x/Ge/sub x/," in Electron Devices Meeting, 1998. IEDM '98. Technical Digest., International, 1998, pp. 115-118.
[95] K. Po-Yi, C. Tien-Sheng, H. Jyun-Siang, and L. Tan-Fu, "Poly-Si Thin-Film Transistor Nonvolatile Memory Using Ge Nanocrystals as a Charge Trapping Layer Deposited by the Low-Pressure Chemical Vapor Deposition," Electron Device Letters, IEEE, vol. 30, pp. 234-236, 2009.
[96] I. H. Szu, C. Hung-Tse, C. Yu-Cheng, C. Chi-Lin, and K. Ya-Chin, "MONOS memory in sequential laterally solidified low-temperature poly-Si TFTs," Electron Device Letters, IEEE, vol. 27, pp. 272-274, 2006.
[97] S. Aritome, R. Shirota, R. Kirisawa, T. Endoh, R. Nakayama, K. Sakui, et al., "A reliable bi-polarity write/erase technology in flash EEPROMs," in Electron Devices Meeting, 1990. IEDM '90. Technical Digest., International, 1990, pp. 111-114.
[98] Y. C. Lin, C. S. Lai, S. S. Chung, E. Yang, S. Pittikoun, S. M. Tzeng, et al., "A highly reliable NAND structure flash memory capable for low voltage operation," in Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, 2005, pp. 666-667.
[99] J. J. Chang, "Theory of MNOS memory transistor," Electron Devices, IEEE Transactions on, vol. 24, pp. 511-518, 1977.
[100] Y. Kuo, "Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous silicon thin film transistors—a critical review," Vacuum, vol. 51, pp. 741-745, 12/1/ 1998.
[101] W. Stiller, Arrhenius equation and non-equilibrium kinetics: 100 years Arrhenius equation: BSB BG Teubner, 1989.
[102] O. K. B. Lui and P. Migliorato, "A new generation-recombination model for device simulation including the Poole-Frenkel effect and phonon-assisted tunnelling," Solid-State Electronics, vol. 41, pp. 575-583, 4// 1997.
[103] J. h. Lee, H. D. Kim, C. H. Lee, H.-J. Chung, S. C. Kim, and S. S. Kim, "The technological trends of future AMOLED," presented at the Proc. SPIE 7415, Organic Light Emitting Materials and Devices XIII, San Diego, CA 2009.
[104] M. Pope, H. P. Kallmann, and P. Magnante, "Electroluminescence in Organic Crystals," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 04/15/ 1963.
[105] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, p. 913, 1987.
[106] J. K. Mahon, "5.1: Invited Paper: History and Status of Organic Light Emitting Device (OLED) Technology for Vehicular Applications," in SID Symposium Digest of Technical Papers, 2001, pp. 22-25.
[107] R. M. A. Dawson and M. G. Kane, "24.1: Invited Paper: Pursuit of Active Matrix Organic Light Emitting Diode Displays," in SID Symposium Digest of Technical Papers, 2001, pp. 372-375.
[108] H.-K. Chung, H.-D. Kim, and B. Kristal, "40.1: Invited Paper: AMOLED Technology for Mobile Displays," in SID Symposium Digest of Technical Papers, 2006, pp. 1447-1450.
[109] H. D. Kim, H.-J. Chung, B. H. Berkeley, and S. S. Kim. (2009) Emerging technologies for the commercialization of AMOLED TVs. Information Display. 09.
[110] M. K. Hatalis, M. J. Stewart, C. W. Tang, and J. Burtis, "Polysilicon TFT active matrix organic EL displays," in Proc. SPIE 3057, Cockpit Displays IV: Flat Panel Displays for Defense Applications, Orlando, FL 1997, pp. 277-286.
[111] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, "Comparison of a‐Si and Poly‐Si for AMOLED displays," Journal of the Society for Information Display, vol. 12, pp. 367-371, 2004.
[112] A. Nathan, G. R. Chaji, and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," Display Technology, Journal of, vol. 1, pp. 267-277, 2005.
[113] J.-H. Lee, W.-J. Nam, K.-S. Shin, and M.-K. Han, "Hysteresis phenomenon of hydrogenated amorphous silicon thin film transistors for an active matrix organic light emitting diode," Journal of Non-Crystalline Solids, vol. 352, pp. 1719-1722, 2006.
[114] E. Kanda, T. Eguchi, Y. Hiyoshi, T. Chino, Y. Tsuchiya, T. Iwashita, et al., "55.2: Integrated Active Matrix Capacitive Sensors for Touch Panel LTPS-TFT LCDs," in SID Symposium Digest of Technical Papers, 2008, pp. 834-837.
[115] H. Aziz and Z. D. Popovic, "Degradation phenomena in small-molecule organic light-emitting devices," Chemistry of materials, vol. 16, pp. 4522-4532, 2004.
[116] F. So and D. Kondakov, "Degradation Mechanisms in Small-Molecule and Polymer Organic Light-Emitting Diodes," Advanced Materials, vol. 22, pp. 3762-3777, 2010.
[117] H. Soon-Kwang, S. Jea-Ho, S. In-Gyo, K. Keun-Choul, B. Sung-Il, L. Hee-Young, et al., "New Pixel Design on Emitting Area for High Resolution Active-Matrix Organic Light-Emitting Diode Displays," Display Technology, Journal of, vol. 6, pp. 601-606, 2010.
[118] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, et al., "The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays," in Electron Devices Meeting, 1998. IEDM '98. Technical Digest., International, 1998, pp. 875-878.
[119] G. Xiaojun and S. R. P. Silva, "Investigation on the current nonuniformity in current-mode TFT active-matrix display pixel circuitry," Electron Devices, IEEE Transactions on, vol. 52, pp. 2379-2385, 2005.
[120] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, "Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 1477-1486, 2004.
[121] J.-J. Lih, C.-F. Sung, C.-H. Li, T.-H. Hsiao, and H.-H. Lee, "Comparison of a-Si and Poly-Si for AMOLED displays," Journal of the Society for Information Display, vol. 12, pp. 367-371, 2004.
[122] S.-H. Jung, W.-J. Nam, and M.-K. Han, "P-104: A New Voltage Modulated AMOLED Pixel Design Compensating Threshold Voltage Variation of Poly-Si TFTs," in SID Symposium Digest of Technical Papers, 2002, pp. 622-625.
[123] L. Chih-Lung and C. Yung-Chih, "A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED," Electron Device Letters, IEEE, vol. 28, pp. 129-131, 2007.
[124] S. Ono and Y. Kobayashi, "Four-thin-film-transistor pixel circuit for amorphous-silicon active-matrix organic light-emitting diode displays," Japanese Journal of Applied Physics, vol. 43, p. 7947, 2004.
[125] L. Jae-Hoon, N. Woo-Jin, K. Byeong-Koo, C. Hong-Seok, H. Yong-Min, and H. Min-Koo, "A New Poly-Si TFT Current-Mirror Pixel for Active Matrix Organic Light Emitting Diode," Electron Device Letters, IEEE, vol. 27, pp. 830-833, 2006.
[126] G. Joon-Chul, C. Hoon-Ju, J. Jin, and H. Chul-Hi, "A new pixel circuit for active matrix organic light emitting diodes," Electron Device Letters, IEEE, vol. 23, pp. 544-546, 2002.
[127] J. Sang-Hoon, N. Woo-Jin, and H. Min-Koo, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs," Electron Device Letters, IEEE, vol. 25, pp. 690-692, 2004.
[128] S. M. Han, H. S. Shin, H. S. Park, and M. K. Han, "A new a‐Si: H TFT pixel circuit employing data‐reflected negative‐bias annealing for a stable and uniform AMOLED," Journal of the Society for Information Display, vol. 16, pp. 727-731, 2008.
[129] O. Shinya, M. Koichi, M. Yuichi, and T. Takatoshi, "Vt Compensation Circuit for AM OLED Displays Composed of Two TFTs and One Capacitor," Electron Devices, IEEE Transactions on, vol. 54, pp. 462-467, 2007.
[130] C. T. Bartlett, "Application of flat panel devices to avionics head-up and helmet-mounted displays," in Proc. SPIE 2949, Imaging Sciences and Display Technologies, 1997, pp. 112-124.