研究生: |
沈怡康 Shen, Yi-Kang |
---|---|
論文名稱: |
人臉辨識基於局部二元模式的方向 LOCAL BINARY PATTERN ORIENTATION BASED FACE RECOGNITION |
指導教授: |
邱瀞德
Chiu, Ching-Te |
口試委員: |
李政崑
Jenq-Kuen Lee 范倫達 Lan-Da Van |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 人臉辨識 、流明不變 、尺度不變特徵轉換 、局部二元圖 |
外文關鍵詞: | face recognition, illumination invariance, Scale-invariant feature transform, local binary patterns |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流明改變和臉部表情在一般的環境中常常會造成人臉辨識的效率降低.傳統的尺度不變特徵轉換對於旋轉及大小有著良好的效果,但是在光影變化中辨識率則降低而且也需要較多的運算時間.因此,我們提出了一種較快的描述還有比對方法用在尺度不變特徵轉換上,利用局部二元圖方向還有直方圖均衡化移除光影的影響.而此方法有下列的優點(1)有效的移除光影影響 (2)提取不同的臉部細節 (3)降低了計算的花費.另外,我們也提出使用感興趣區域(ROI)來移除無用的特徵點,藉此降低我們的運算時間並且維持一定的辨識率.實驗結果顯示我們的方法在extended YaleB database辨識率比原本的方法好了0.8%並且降低了28.3%的運算時間,在FERET fc database中達到辨識率比原本的方法好了1.2%,並且比原本的SQI方法降低了28.6%的計算時間.而ROI的系統則在extended YaleB database中降低了61.9%的運算時間,還達到了75.7%的辨識率,在FERET fa database中降低了57.4%的運算時間,還達到了95.2%的辨識率
Illumination variation and facial expression generally causes performance degradation of face recognition systems under real-life environments. In traditionally, Scale-invariant feature transform (SIFT) has good result for scale-variance and rotation, but the recognition is lower in illumination variation, and requires high computation complexity. Therefore, we propose a fast descriptor and matching method on SIFT, using the local binary patterns orientation and histogram equalization to remove the lighting effects. This method has the following advantages: (1) Remove the lighting influence effectively. (2) Extract different face details. (3) Reduce computational cost. We also propose using region of interest to remove the useless interest points for saving our computation time and maintaining the recognition rate. Experimental results demonstrate that our proposed has 0.8\% higher recognition rate than original and reduces 28.3\% computation time for FERET database has 1.2\% higher recognition rate than original and reduces 28.6\% computational time compared to original. In the ROI systems, experimental results demonstrate that our proposed reduces 61.9\% computation time and has 75.7\# recognition rates for FERET database has 95.2\% recognition rate original and reduces 57.4\% computational time.
[1] M. Turk and A. Pentland,\Eigenfaces for recognition," J. Cognitive Neu-
roscience, vol. 3, no. 1, pp. 71-86, Jan. 1991. [Online]. Available:
http://dx.doi.org/10.1162/jocn.1991.3.1.71
[2] L. Sirovich and M. Kirby, \Low-dimensional procedure for the characteriza-
tion of human faces," Journal of The Optical Society of America A-
opticsImage Science and Vision, vol. 4, 1987.
[3] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, \Eigenfaces vs. Fisher-
faces: Recognition Using Class Specic Linear Projection, IEEE Trans. Pattern
Anal. Mach. Intelligence, vol. 19, no. 7, pp. 711-720, Jul. 1997
[4] P. S. Penev and J. J. Atick, Local feature analysis: A general statistical theory
for object representation, Network: Computation in Neural Systems, vol. 7,
no. 3, pp. 477-500, 1996.
[5] L. Wiskott, J. M. Fellous, N. Kr uger and C. von der Malsburg, Face recog-
nition by Elastic Bunch Graph Matching, IEEE Trans. Pattern Anal. Mach.
Intelligence, vol. 19, no. 7, pp. 755-779, Jul. 1997.
[6] T. Ahonen, A. Hadid and M. Pietik ainen, Face Description with Local Binary
Patterns: Application to Face Recognition, IEEE Trans. Pattern Anal. Mach.
Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
[7] S. Zhao, Y. Gao and B. Zhang, Sobel-LBP, IEEE International Conference
on Image Processing, pp. 2144-2147, Oct. 2008.
[8] L. Chen, Y. H. Wang, Y. D. Wang and D. Huang, Face recognition with sta-
tistical Local Binary Patterns, International Conference on Machine Learning
and Cybernetics, vol. 4, pp. 2433-2439, Jul. 2009.
[9] B. C. Zhang, Y. S. Gao, S. Q. Zhao and J.Z. Liu, Local Derivative Pattern
Versus Local Binary Pattern: Face Recognition With High-Order Local Pat-
tern Descriptor, IEEE Transactions on Image Processing, vol. 19, no. 2, pp.
533-544, Feb. 2010.
[10] X. Tan and B. Triggs, Enhanced Local Texture Feature Sets for Face Recogni-
tion Under Dicult Lighting Conditions, IEEE Transactions on Image Pro-
cessing, vol. 19, no. 6, pp. 1635-1650, Jun. 2010.
[11] W. Zhang, S. Shan, W. Gao, X. Chen and H. Zhang, (Local Gabor Binary
Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for
Face Representation and Recognition), IEEE International Conference on
Computer Vision, vol. 1, pp. 786-791, Oct. 2005.
[12] S. Xie, S. Shan, X. Chen and J. Chen, Fusing Local Patterns of Gabor Mag-
nitude and Phase for Face Recognition, IEEE Transactions on Image Pro-
cessing, vol. 19, no. 5, pp. 1349-1361, May 2010.
[13] N. S. Vu, A. Caplier, \Enhanced patterns of oriented edge magnitudes for face
recognition and image matching," IEEE Transactions on Image Processing,
vol. 21, no. 3, 1352-1365, March 2012.
[14] D. G. Lowe, \Distinctive image features from scale-invariant keypoints," Jour-
nal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
[15] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. L. Lu, \Person-
specic sift features for face recognition," Proc. of The IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 593-596, 2007.
[16] Y. Ke and R. Sukthankar, \Pca-sift: a more distinctive representation for lo-
cal image descriptors," Proc. of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pp.506-513, 2004.
[17] C. Geng, \Face recognition using sift features," Proc. of The 16th IEEE In-
ternational Conference on Image Processing, pp. 3313-3316, 2009.
[18] A. Majumdar, and R. K. Ward, \Discriminative sift features for face recogni-
tion," Proc. of Canadian Conference on Electrical and Computer Engineering,
pp. 27-30, 2009.
[19] J. Krizaj, V. Struc and N. Pavesic, \Adaptation of sift features for robust
face recognition," Proc. of The 7th international conference on Image Analysis
and Recognition, pp. 394-404, 2010.
[20] K. Mikolajczyk, and C. Schmid, \A performance evaluation of local descrip-
tors," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no.
10, pp. 1651-1630, 2005.
[21] B. Dai, D. Zhang, H. Liu, S. Sun, and K. Li, \Evaluation of face recognition
techniques," Proc. of SPIE, vol. 7489, pp. 74890M-1-74890M-7, 2009.
[22] P. Viola, M. J. Jones, \Robust Real-time Object Detection," Cambridge Re-
search Laboratory, February, 2001.
[23] A. P. Witkin, \Scale-space ltering." In International Joint Conference on
Articial Intelligence, Karlsruhe, Germany, pp. 10191022, 1983.
[24] J. J. Koenderink, \The structure of images." Biological Cybernetics,
50:363396, 1984.
[25] T. Lindeberg, \Scale-space theory: A basic tool for analysing structures at
dierent scales." Journal of Applied Statistics, 21(2):224270, 1994.
[26] D.G. Lowe, \Object recognition from local scale-invariant features." In In-
ternational Conference on Computer Vision, Corfu, Greece, pp. 11501157,
1999.
[27] K. Mikolajczyk, \Detection of local features invariant to ane trans-
formations," Ph.D. thesis, Institut National Polytechnique de Grenoble,
France.2002.
[28] M. Brown, D. G. Lowe, \Invariant features from interest point groups." In
British Machine Vision Conference, Cardi, Wales, pp. 656665, 2002.
[29] C. Harris,and M. Stephens, \Acombined corner and edge detector." In Fourth
Alvey Vision Conference, Manchester, UK, pp. 147151, 1988.
[30] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, \The feret evaluation method-
ology for face-recognition algorithms," Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 22, no. 10, pp. 1090-1104, 2000.
[31] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, \From few to
many: Illumination cone models for face recognition under variable lighting
and pose," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 643-
660, Jun. 2001. [Online]. Available: http://dx.doi.org/10.1109/34.927464
[32] H. Bay, T. Tuytelaars, and L. V. GoolSurf : \Speeded up robust features."
In Computer VisionECCV, pp. 404-417), Springer Berlin Heidelberg,(2006).