簡易檢索 / 詳目顯示

研究生: 陳文進
Wen-Jin Chen
論文名稱: 錫鉛銲料(Sn63Pb37)與無鉛銲料(Sn95.5Ag4Cu0.5)對熱電模組接點電性影響之研究
A study of electrical properties of Sn63Pb37 and Sn95.5Ag4Cu0.5 solder joints in thermoelectric modules
指導教授: 廖建能
Chien-Neng Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 接觸電阻率熱電無鉛銲料錫鉛銲料
外文關鍵詞: contact resistivity, thermoelectric, lead-free solder, lead-tin solder
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電致冷模組通常是利用銲接反應將熱電材料與金屬導線連結起來。隨著熱電模組微小化,熱電材料尺寸愈來愈小,熱電材料與電極端間的總接觸電阻將對熱電元件的致冷能力造成影響。錫鉛銲料一直是微電子封裝工業最主要且常用的銲料,然而,在WEEE與ROHS法規的限制下,錫鉛銲料勢必將被無鉛銲料所取代。本論文利用傳統錫鉛銲料與無鉛銲料Sn95.5Ag4Cu0.5分別和P、N型熱電材料接著,進而比較錫鉛銲料與無鉛銲料Sn95.5Ag4Cu0.5對P、N型熱電材料間接觸電阻值的大小與接點微結構的差異性。本研究亦研究無鉛銲料與P、N型熱電材料間,隨著接著時間不同其接觸電阻率變化情形。實驗結果發現,無鉛銲料Sn95.5Ag4Cu0.5的接觸電阻率較傳統錫鉛銲料要來的低。因此,無鉛銲料Sn95.5Ag4Cu0.5對於熱電元件的致冷能力影響較小。然而,無鉛銲料較錫鉛銲料與熱電材料間的介金屬化合物層厚度要來的大。這將是元件接點可靠度的一大隱憂。且隨著無鉛銲料與熱電材料的接著時間增長,造成其介金屬化合物層變厚,而接觸電阻率亦有增大的趨勢。根據實驗結果計算,介金屬化合物層厚度與接著時間成線性關係,推論介金層化合物的生長機制主要為反應控制。


    Thermoelectric elements and metallic conductors are connected by soldering reaction in thermoelectric cooling module. Owing to miniaturization of thermoelectric cooling modules, the size of thermoelectric elements is also decreasing. The contact resistance between thermoelectric elements and electrodes are expected to affect the cooling performance of thermoelectric modules. Lead-tin solder is widely used in microelectronic packaging industry. However, it will be replaced by lead-free solder soon due to WEEE and ROHS regulations. In this study, p-type and n-type thermoelectric elements were jointed by lead-tin and Sn95.5Ag4Cu0.5 solders, respectively, and contact resistivity and microstructure at the solder/thermoelectric junctions were compared. Besides, this study also discussed the changes of contact resistivity with different reaction time when lead-free solder and thermoelectric material are connected. It is observed that the contact resistivity of Sn95.5Ag4Cu0.5 solder/Cu junction is lower than that of lead-tin solder/Cu junction. Therefore, Sn95.5Ag4Cu0.5 solder is expected to have smaller influences on the cooling performance of thermoelectric device. But, the thickness of IMC at the interface of Sn95.5Ag4Cu0.5 solder/thermoelectric element is thicker than that at lead-tin solder/thermoelectric element interface, which may cause an implicit reliability problem. With the increase of soldering reaction time, the IMC thickness and contact resistivity between thermoelectric material and electrode also increased. The experimental results indicate that the IMC thickness is proportional to the reaction time, and a reaction-controlled kinetic process is suggested.

    頁數 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章、文獻回顧 4 2.1 熱電原理 4 2.1.1 Seebeck 效應 5 2.1.2 Peltier 效應 6 2.1.3 Thomson 效應 7 2.2 熱電致冷模組組裝與銲接反應 8 2.3 接觸電阻理論與量測方法 11 2.4 接觸電阻對於熱電致冷模組效能之影響 12 第三章、實驗方法 18 3.1 試片製備 18 3.1.1 試片處理 19 3.1.2 試片接著 20 3.1.3 試片研磨與拋光 20 3.3 接觸電阻分析 21 3.4 界面微結構分析儀器 23 第四章、結果與討論 27 4.1錫鉛(Sn63Pb37)銲料、無鉛(Sn95.5Ag4Cu0.5)銲料與熱電模組接著的接觸電阻率之比較 27 4.1.1 銲料與熱電材料界面微結構比較 27 4.1.2 接觸電阻率的比較 30 4.1.3 銅極與銲料間介金屬化合物對接觸電阻率的影響 34 4.2 接著時間變化對無鉛銲料與熱電材料的接觸電阻率之影響 44 4.2.1 接著時間變化對無鉛銲料與熱電材料間的介金屬化合物層厚 度影響 44 4.2.2 利用EPMA定量分析錫銀銅銲料與P型熱電材料間的介金屬化 合物 51 4.2.3 無鉛銲料與P型熱電材料間的介金屬化合物層厚度對接觸電 阻率的影響 54 4.2.4 錫銀銅銲料與銅極間介金屬化合物層厚度對接觸電阻率的影 響 57 4.3錫鉛(Sn63Pb37)銲料、無鉛(Sn95.5Ag4Cu0.5)銲料與熱電模組接著的接觸電阻率對於熱電致冷效能之比較 59 第五章、結論 61 參考文獻 63

    [1] H.J. Goldsmid, “Thermoelectric Refrigeration”, Pion Ltd., London, 1986.
    [2] 譯者,施欣嵐,彰化師範大學物理系
    http://www.physicsweb.org/articles/news/10/6/5/1
    [3] Bennett, G.L., Historical overview of the U.S. use of space nuclear power, Space Power, 8, 259, 1989.
    [4] Preliminary Assessment of Offshore Platform Conversion to Geothermal Power Station, Department of Energy Report ETSUG 145, Washington, D.C. 1989.
    [5] D.M. Rowe, “Possible Offshore Application of Thermoelectric Conversion”, The Marine Technology Society Journal 27, 43(1994).
    [6] G.Min and D.M. Rowe, Energy Convers.Manage.41,163(2000).
    [7] C.M.Cortes and R.G.Hunsperger, IEEE Trans. Electron Devices
    ED-27,521(1980).
    [8] G.Min and D.M. Rowe,Solid-State Electron.43,923(1999).
    [9] Y.S.Ju and U.Ghoshal,J.Appl.phys.88,4135(2000).
    [10] G.A. Rinne, “The role of microstructure in thermal fatigue of Pb-Sn
    solder joints”,solder Joint Reliability, p.225(1991).
    [11] W.B. O’Hara and N.C. Lee, Surf. Mount. Tech., p.44, Jan. 1996.
    [12] R.D. Schueller and A.P. Plepys, Circuit World, 22, p.11 1996.
    [13] W.K. Shu, 1996 Elect. Comp.& Tech. Conf., p.219, 1996.
    [14] W.B. O Hara and N. C. Lee, Int. J. Microcircuits & Elect. Packaging,
    19, p190, 1996.
    [15]永續發展資訊網,
    portal.nccp.org.tw/pressnews/news_show2.php?SN=158 - 22k
    [16] G.A. Rinne, “Issues in accelerated electromigration of solder
    bumps”, Microelectronics Reliability, Vol. 43, p.1975(2003).
    [17] Yasuhiko Hori and Daisuke Kusano ,“Fabrication and evaluation of
    Bi-Te/Pb-te cascade-type thermoelectric module”, 22nd Interational
    Conference on Thermoelectrics (2003).
    [18] K.Hasezaki, A.Yamada, H. Tsukuda and M. Araoka, “Thermoelectric
    Properties of Bi-Te Module Prepared by Mechanical Alloying”,
    Materials Transactions, JIM, Vol. 37, No. 5, P.1224-1227(1996)
    [19] Seebeck, T.J.,“Magnetic polarization of metals and minerals”,
    Abhandlungen der Deutschen Akademie der Wissenschaften zu
    Berlin, 265,1822-1823.
    [20] Peltier, J.C.,“Nouvelles experiences sur la caloricite des courans
    electrique”, Ann.Chim.,LV1 371,1834.
    [21] Thomson,W.,“An account of Carnot’s theory of the motive power of
    heat”, Proc.R.Soc Edinburgh,16,541,1849.
    [22] H.J. Goldsmid, R.W. Douglas,“The use of semiconductors in
    thermoelectric refrigeration”, Journal of Applied Physics, Nov. 1954.
    [23] www.spacetoday.org/SolSys/Voyagers20years.html
    [24] C.E. HO, Y.M. CHEN, and C.R. KAO, J. Elect. Mater. 28, p1231,
    1999.
    [25] K.N. Tu, R.D. Thompson,“Kinetics of interfacial reaction in imetallic Cu-Sn thin films”,Acta Metall., Vol. 30, p. 947(1982).
    [26] K.N. Tu,“Interdiffusion and Reaction in Bimetallic Cu-Sn Thin
    Films”,Acta Metall., Vol. 21, p. 347(1973).
    [27] K.N. Tu,“Cu/Sn interfacial Reactions:Thin-Film Case Versus Bulk
    Case”, Mat. Chem. And Phys., Vol. 46, p. 217(1996).
    [28] K.Barmak, A.GungorAnnealing ,“behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity”,Journal of Applied Physics, 94 ,p.1605-1616(2003).
    [29] Y. C. Chan, Alex C. K. So, J. K. L. Lai, “Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Material Science and Engineering B, Vol.55, p. 5(1998).
    [30] A. Liu, H. K. Kim, K. N. Tu, Paul A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys., Vol. 80, No. 5, p.2774(1996).
    [31] J. J. Chen, Soohwan Jang, T.J. Anderson, F. Ren, Yuanjie Li, Hyun-sik kim, B.P. Gila,“Low specific contact resistance Ti/Au contacts on ZnO”,Applied Physics Letters, Mar. 2006.
    [32] “ Measure/Calculate Metal-semiconductor Junction contact resistance”, http://ece.byu.edu/cleanroom/contact_resistance.phtml
    [33] S.M. Sze, Physics of Semiconductor Devices, John Eiley & Sons,
    1981.
    [34] 莊達人,“VLSI製造技術”,高立出版社。
    [35] R.A. Smith, Semiconductors, 2nd Ed., Cambridge University Press, 1979.
    [36] O.J.Mengali and M.R.Seiler, ”Contact resistance studies on thermoelectric material”, Advanced Energy Conversion. vol2,(1962), p59-68.
    [37] Richard J. Buist and Steven J. Roman, ”Development of a Burst Voltage Measurement System for High-Resolution Contact Resistance Tests of Thermoelectric Heterojunctions” 2000 IEEE, 18th International Conference on Thermoelectrics,(1999)p.249-251.
    [38] CRC Handbook of Thermoelectrics ,edited by D.M. Rowe, Ph.D.,D.Sc.
    [39] 陳怡君,“熱電致冷元件模分析操作條件最佳化之研究”國立清
    華大學材料所(2006)。
    [40] B.L. Chen and G.Y. Li,“Effect of Antimony on the Growth of
    Intermetallic Compounds in Sn-Ag-Cu Pb-free Solder Joints”
    ,Electronic Components and Technology Conference,2003
    [41] L. M. Roger ,“Valence band structure of SnTe”, BRIT. J. APPL.
    PHYS. SER. 2, VOL.1(1968).
    [42] J. R. Dixon and R. F. Bis, phys. Rev., 176(1968)942.
    [43] T. C. Harman, in D. L. Carter and R. T. Bate(eds.), “The physics of
    semimetals and narrow gap semiconductors”, Pergamon Press,
    Oxford, pp.363-382(1971).
    [44] M. Orihashi, Y. Noda, L.-D. Chen, T. Goto, T. Hirai,“Effect of tin
    content on thermoelectric properties of p-type lead tin
    telluride”,Journal of Physics and Chemistry of Solids 61
    (2000)919-923.
    [45] N. GANESAN, V. SIVARAMAKRISHNAN, “Effect of excess
    tin on the electrical properties of SnTe thin films”, JOURNAL OF
    MATERIALS SCIENCE 23(1988) 1237-1242.
    [46]A. L. DAWAR AND P. C. MATHUR, “THE EFFECT OF A
    NON-STOICHIOMETRIC EXCESS OF TIN ON THE
    ELECTRICAL TRANSPORT PROPERTIES OF EPITAXIAL
    P-TYPE SnTe THIN FILMS”,Thin Solid Films, 82(1981)273-278.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE