簡易檢索 / 詳目顯示

研究生: 潘順賢
論文名稱: 以非接觸方法直接估計小能隙石墨烯之機械模數
Direct assessment of Mechanical Modulus for Small Band Gap Graphene by non-contact approach
指導教授: 闕郁倫
謝光前
周立人
口試委員: 陳貴賢
林麗瓊
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 62
中文關鍵詞: 氮化硼參雜石墨烯化學氣相沉積拉曼光譜面內剛度應變規
外文關鍵詞: BN doping, graphene, chemical vapor deposition, Raman spectrum, in plane stiffness, strain sensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大面積的氮化硼摻雜石墨烯 (BNG)已經在先前的研究中被成功合成出來, 並且擁有高達約600 meV 的能隙。到目前為止,還沒有相關的文獻不是用理論模擬的方式去估計BNG的力學系數。本論文展示了ㄧ項新方法去估計低氮化硼濃度BNG的面內剛度。本方法是利用拉曼光譜2D峰值的位移量去測量石墨烯與低氮化硼濃度BNG在底下基板被拉伸的情況下所承受的實際應變,再將此測量出來的應變與已知的石墨烯面內剛度套入理論的公式去得到我們想要的結果。而2at.%氮化硼濃度BNG (2BNG)的面內剛度大約為 309 N/m.此外,我們還利用實驗得知2BNG的電阻對應力的敏感度約為石墨烯的三倍。此結果顯示2BNG是一個比石墨烯更適合在未來作為應變規的材料。


    Graphene has become a popular material for various electronic applications because of its excellent physical properties, but the lack of band gap limits its performance in these electronic devices. Recently, large-area few layers graphene co-doped with boron-nitride (BNG) has been successfully synthesized and it shows a significant band gap up to 600 meV in our previous studies. Determination of mechanical modulus of BNG is one of the key issues in the development of application in electro-mechanical system. But there is no experimental assessment about the mechanical modulus of the small band gap BNG in the literature. In this thesis, we have demonstrated a different approach to estimate the in plane stiffness of BNG with low BN concentration by estimating the strain induced by stretching the underside flexible substrate from the shift of Raman 2D peak. The in plane stiffness can be obtained from the estimated strains of both graphene and BNG and the well known in plane stiffness of graphene using a theoretical formula. The estimated in plane stiffness value of BNG with 2 at% BN concentration is about 309 N/m. Moreover, the conductivity of BNG has shown to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable future material for strain sensor application.

    Content I 摘要 III Abstract IV Acknowledgement V The Index of Figures VI The Index of Tables IX Chapter 1 Introduction 1 1.1 Introduction of graphene 1 1.2 Characteristics of BNG 3 1.2.1 Characteristics of bonding 3 1.2.2 Characteristics of Raman spectrum 5 1.2.3 Characteristics of domain distribution 6 1.2.4 Mechanical modulus 7 1.3 Introduction of strain sensor 9 1.4 Motivation and research direction 11 Chapter 2 Literatures Review 12 2.1 Synthesis of graphene 12 2.1.1 Mechanical cleavage 12 2.1.2 Reduction of graphene oxide 13 2.1.3 Epitaxial growth 14 2.1.4 Chemical vapor deposition (CVD) 15 2.2 Transfer methods of graphene 17 2.2.1 Polymer support 17 2.2.2 Roll-to-roll process 19 2.2.3 PDMS stamping 20 2.3 Band gap engineering in graphene 23 2.3.1 Quantum confinement of charge carriers 23 2.3.2 Controlling the stacking geometry 24 2.3.3 Applying a strain to graphene 25 2.3.4 Chemical doping 26 Chapter 3 Experiment Details 27 3.1 Sample growth and characterization 28 3.2 Fabrication of strain sensor devices 29 3.2.1 Samples transferring 29 3.2.2 Deposition of metal contact for device 31 3.3 Investigation of strain effect 32 3.3.1 Strain effect on electrical property 32 3.3.2 Strain effect on Raman spectra 34 Chapter 4 Results and Discussion 36 4.1 Strain effect on Raman spectrum of CVD graphene and 2BNG 36 4.1.1 Investigation of peaks ratios under strain 36 4.1.2 Investigation of shift of 2D peak position in elastic region 43 4.2 Estimation of mechanical modulus of 2BNG by Raman 2D peak 45 4.3 Strain effect on electrical property of CVD graphene and 2BNG 48 4.3.1 Current-voltage (I-V) measurements under strain 48 4.3.2 Cyclic measurements of the strain sensors devices 51 4.3.3 Piezoresistive properties of the strain sensors devices 53 Chapter 5 Conclusion 55 References 56

    1. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008. 100: p. 016602.
    2. J.H. Chen, C. Jang, S. Xiao, et al., Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nature Nanotechnology, 2008. 3: p. 206-209.
    3. C. Lee, X. Wei, J.W. Kysar, et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321: p. 385-388.
    4. R.R. Nair, P. Blake, A.N. Grigorenko, et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320: p. 1308.
    5. A.K. Geim and K.S. Novoselov, The Rise of Graphene. Nature Materials, 2007. 6: p. 183 - 191.
    6. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306: p. 666-669.
    7. R. Cheng, J. Bai, L. Liao, et al., High-Frequency Self-Aligned Graphene Transistors with Transferred Gate Stacks. Proceedings of the National Academy of Sciences, 2012. 109: p. 11588-11592.
    8. F. Bonaccorso, Z. Sun, T. Hasan, et al., Graphene Photonics and Optoelectronics. Nature Photonics, 2010. 4: p. 611-622.
    9. Y. Wu, K.A. Jenkins, A. Valdes-Garcia, et al., State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012. 12: p. 3062-3067.
    10. B. Dlubak, M.-B. Martin, C. Deranlot, et al., Highly Efficient Spin Transport in Epitaxial Graphene on SiC. Nature Physics, 2012. 8: p. 557-561.
    11. X.-W. Fu, Z.-M. Liao, J.-X. Zhou, et al., Strain Dependent Resistance in Chemical Vapor Deposition Grown Graphene. Applied Physics Letters, 2011. 99: p. 213107.
    12. B. Liang, L. Fang, G. Yang, et al., Direct Electron Transfer Glucose Biosensor Based on Glucose Oxidase Self-Assembled on Electrochemically Reduced Carboxyl Graphene. Biosensors and Bioelectronics, 2013. 43: p. 131-136.
    13. Y.-W. Son, M.L. Cohen, and S.G. Louie, Energy Gaps in Graphene Nanoribbons. Physical Review Letters, 2006. 97: p. 216803.
    14. P. Shemella, Y. Zhang, M. Mailman, et al., Energy Gaps in Zero-Dimensional Graphene Nanoribbons. Applied Physics Letters, 2007. 91: p. 042101.
    15. S. Linden, D. Zhong, A. Timmer, et al., Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788). Physical Review Letters, 2012. 108: p. 216801.
    16. Y. Zhang, T.T. Tang, C. Girit, et al., Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene. Nature, 2009. 459: p. 820-823.
    17. Y. Shi, K.K. Kim, A. Reina, et al., Work Function Engineering of Graphene Electrode via Chemical Doping. Acs Nano, 2010. 4: p. 2689-2694.
    18. S. Casolo, R. Martinazzo, and G.F. Tantardini, Band Engineering in Graphene with Superlattices of Substitutional Defects. The Journal of Physical Chemistry C, 2011. 115: p. 3250-3256.
    19. D. Usachov, O. Vilkov, A. Grüneis, et al., Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 2011. 11: p. 5401-5407.
    20. I.I. Naumov and A.M. Bratkovsky, Gap Opening in Graphene by Simple Periodic Inhomogeneous Strain. Physical Review B, 2011. 84: p. 245444.
    21. Y. Lu and J. Guo, Band Gap of Strained Graphene Nanoribbons. Nano Research, 2010. 3: p. 189-199.
    22. L. Ci, L. Song, C. Jin, et al., Atomic Layers of Hybridized Boron Nitride and Graphene Domains. Nature Materials, 2010. 9: p. 430-435.
    23. C.-K. Chang, S. Kataria, C.-C. Kuo, et al., Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping. Acs Nano, 2013. 7: p. 1333-1341.
    24. L.M. Malard, M.A. Pimenta, G. Dresselhaus, et al., Raman Spectroscopy in Graphene. Physics Reports, 2009. 473: p. 51-87.
    25. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, et al., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009. 21: p. 4726-4730.
    26. A.C. Ferrari, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications, 2007. 143: p. 47-57.
    27. Q. Peng, A. Zamiri, W. Ji, et al., Elastic Properties of Hybrid Graphene/Boron Nitride Monolayer. Acta Mechanica, 2012. 223: p. 2591-2596.
    28. J.A. Rogers, T. Someya, and Y. Huang, Materials and Mechanics for Stretchable Electronics. Science, 2010. 327: p. 1603-1607.
    29. H. Chiriac, M. Urse, F. Rusu, et al., Ni-Ag Thin Films as Strain-Sensitive Materials for Piezoresistive Sensors. Sensors and Actuators A: Physical, 1999. 76: p. 376-380.
    30. V. Voronin, I. Maryamova, Y. Zaganyach, et al., Silicon Whiskers for Mechanical Sensors. Sensors and Actuators A: Physical, 1992. 30: p. 27-33.
    31. Y. Lee, S. Bae, H. Jang, et al., Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters, 2010. 10: p. 490-493.
    32. Y. Wang, R. Yang, Z. Shi, et al., Super-Elastic Graphene Ripples for Flexible Strain Sensors. Acs Nano, 2011. 5: p. 3645-3650.
    33. S.-H. Bae, Y. Lee, B.K. Sharma, et al., Graphene-Based Transparent Strain Sensor. Carbon, 2013. 51: p. 236-242.
    34. J. Zhao, C. He, R. Yang, et al., Ultra-Sensitive Strain Sensors Based on Piezoresistive Nanographene Films. Applied Physics Letters, 2012. 101: p. 063112.
    35. Z.H. Ni, T. Yu, Y.H. Lu, et al., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. Acs Nano, 2008. 2: p. 2301-2305.
    36. K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102: p. 10451-10453.
    37. W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80: p. 1339-1339.
    38. S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 2007. 45: p. 1558-1565.
    39. S. Stankovich, R.D. Piner, X. Chen, et al., Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate). Journal of Materials Chemistry, 2006. 16: p. 155-158.
    40. A.B. Bourlinos, D. Gournis, D. Petridis, et al., Graphite Oxide:  Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir, 2003. 19: p. 6050-6055.
    41. G. Eda, G. Fanchini, and M. Chhowalla, Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nature Nanotechnology, 2008. 3: p. 270-274.
    42. H.A. Becerril, J. Mao, Z. Liu, et al., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. Acs Nano, 2008. 2: p. 463-470.
    43. C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, et al., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 2007. 7: p. 3499-3503.
    44. C.-G. Lee, S. Park, R.S. Ruoff, et al., Integration of Reduced Graphene Oxide into Organic Field-Effect Transistors as Conducting Electrodes and as a Metal Modification Layer. Applied Physics Letters, 2009. 95: p. 023304.
    45. H.-J. Shin, K.K. Kim, A. Benayad, et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 2009. 19: p. 1987-1992.
    46. J. Hass, W.A. de Heer, and E.H. Conrad, The Growth and Morphology of Epitaxial Multilayer Graphene. Journal of Physics: Condensed Matter, 2008. 20: p. 323202.
    47. W.A. de Heer and C. Berger, Epitaxial Graphene. Journal of Physics D: Applied Physics, 2012. 45: p. 150301.
    48. F. Varchon, R. Feng, J. Hass, et al., Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate. Physical Review Letters, 2007. 99: p. 126805.
    49. J. Penuelas, A. Ouerghi, D. Lucot, et al., Surface Morphology and Characterization of Thin Graphene Films on SiC Vicinal Substrate. Physical Review B, 2009. 79: p. 033408.
    50. P.R. Somani, S.P. Somani, and M. Umeno, Planer Nano-Graphenes from Camphor by CVD. Chemical Physics Letters, 2006. 430: p. 56-59.
    51. H. Cao, Q. Yu, R. Colby, et al., Large-Scale Graphitic Thin Films Synthesized on Ni and Transferred to Insulators: Structural and Electronic Properties. Journal of Applied Physics, 2010. 107: p. 044310-7.
    52. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010. 10: p. 4128-4133.
    53. K.S. Kim, Y. Zhao, H. Jang, et al., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 2009. 457: p. 706-710.
    54. X. Li, W. Cai, J. An, et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324: p. 1312-1314.
    55. S.J. Chae, F. Güneş, K.K. Kim, et al., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials, 2009. 21: p. 2328-2333.
    56. S. Lee, K. Lee, and Z. Zhong, Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Letters, 2010. 10: p. 4702-4707.
    57. X. Li, W. Cai, L. Colombo, et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9: p. 4268-4272.
    58. A. Reina, X. Jia, J. Ho, et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2008. 9: p. 30-35.
    59. A. Reina, H. Son, L. Jiao, et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112: p. 17741-17744.
    60. X. Li, Y. Zhu, W. Cai, et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9: p. 4359-4363.
    61. W.H. Lee, J. Park, S.H. Sim, et al., Surface-Directed Molecular Assembly of Pentacene on Monolayer Graphene for High-Performance Organic Transistors. Journal of the American Chemical Society, 2011. 133: p. 4447-4454.
    62. S. Bae, H. Kim, Y. Lee, et al., Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes. Nature Nanotechnology, 2010. 5: p. 574-578.
    63. S.J. Kang, B. Kim, K.S. Kim, et al., Inking Elastomeric Stamps with Micro-Patterned, Single Layer Graphene to Create High-Performance OFETs. Advanced Materials, 2011. 23: p. 3531-3535.
    64. M. Ezawa, Peculiar width Dependence of the Electronic Properties of Carbon Nanoribbons. Physical Review B, 2006. 73: p. 045432.
    65. D.A. Abanin, P.A. Lee, and L.S. Levitov, Spin-Filtered Edge States and Quantum Hall Effect in Graphene. Physical Review Letters, 2006. 96: p. 176803.
    66. T. Ohta, A. Bostwick, T. Seyller, et al., Controlling the Electronic Structure of Bilayer Graphene. Science, 2006. 313: p. 951-954.
    67. V.M. Pereira, A.H. Castro Neto, and N.M.R. Peres, Tight-Binding Approach to Uniaxial Strain in Graphene. Physical Review B, 2009. 80: p. 045401.
    68. G. Cocco, E. Cadelano, and L. Colombo, Gap Opening in Graphene by Shear Strain. Physical Review B, 2010. 81: p. 241412.
    69. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, et al., Substrate-Induced Bandgap Opening in Epitaxial Graphene. Nature Materials, 2007. 6: p. 770-775.
    70. Z.H. Ni, T. Yu, Z.Q. Luo, et al., Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy. Acs Nano, 2009. 3: p. 569-574.
    71. E.H. Hwang, S. Adam, and S. Das Sarma, Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters, 2007. 98: p. 186806.
    72. M.A. Bissett, W. Izumida, R. Saito, et al., Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. Acs Nano, 2012. 6: p. 10229-10238.
    73. I. Srivastava, R.J. Mehta, Z.-Z. Yu, et al., Raman Study of Interfacial Load Transfer in Graphene Nanocomposites. Applied Physics Letters, 2011. 98: p. 063102.
    74. M. Topsakal, S. Cahangirov, and S. Ciraci, The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain. Applied Physics Letters, 2010. 96: p. 091912.
    75. M.A. Bissett, M. Tsuji, and H. Ago, Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene. The Journal of Physical Chemistry C, 2013. 117: p. 3152-3159.
    76. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, et al., Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Grüneisen Parameters, and Sample Orientation. Physical Review B, 2009. 79: p. 205433.
    77. S.K. Singh, M. Neek-Amal, S. Costamagna, et al., Thermomechanical Properties of a Single Hexagonal Boron Nitride Sheet. Physical Review B, 2013. 87.
    78. V.M. Pereira, A.H. Castro Neto, H.Y. Liang, et al., Geometry, Mechanics, and Electronics of Singular Structures and Wrinkles in Graphene. Physical Review Letters, 2010. 105: p. 156603.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE