簡易檢索 / 詳目顯示

研究生: 李承穎
Lee, Cheng-Ying
論文名稱: 高導熱銀銅基鑽石複材/基板接合模組
High Thermal Conductive Diamond/Ag-Cu Composite and Substrate Joining Modules
指導教授: 林樹均
Lin, Su-Jien
口試委員: 李勝隆
洪健龍
張守一
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 157
中文關鍵詞: 鑽石複材高導熱低熔點合金
外文關鍵詞: high thermal conductivity, composite, low melting point alloy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以銀銅作為基材,添加微量活性元素鈦改善鑽石與金屬基材的界面潤濕性,並以水平爐管進行無壓真空液相燒結製備銀銅基鑽石複合材料。改變燒結溫度與壓胚壓力參數,所得複材熱傳導值可達780 W/mK。經由添加銅鈦薄片於生胚上燒結,可使銀銅基鑽石複材表面粗糙度下降至1.9 m,適合做後續接合基板之用。
    與商用氮化鋁、矽、氧化鋁基板做接合,使用四種低熔點合金作為熱界面材料,包括:市售低熔點合金Ga78In14Sn8,以及自製三種鎵銦錫合金,其中自製合金熔點依序為80 C、100 C及120 C。在接合模組方面,氧化鋁、氮化鋁、矽基板分別使用自製熔點80 C、100 C、120 C之熱界面材料,其模組之熱傳導係數最佳分別可達223 W/m·K、432 W/m·K及405 W/m·K,相較於市售低熔點合金接合模組熱傳導值提升15-39%;在熱循環測試方面,自製熔點120 C之合金系統有最佳耐熱循環能力,其接合模組經1000次室溫至85 C熱循環後,三種基板仍能維持90%以上熱傳導值,而市售低熔點合金接合模組僅能維持約63-82% 熱傳導值;顯示自製之低熔點合金熱性質表現優於市售低熔點合金,在電子構裝應用上,此熱界面材料極具有商業潛力。


    Minor-addition of Ti was added into matrix to improve the wettability between diamonds and Ag-Cu matrix in this study. Pressureless liquid phase sintering process was adopted for the fabrication of diamond/Ag-Cu composites. The thermal conductivity optimum result is 780 W/mK, achieved by using 1020 C as sintering temperature. The surface roughness were reduced from 73 μm to below 2 μm by attaching Cu-Ti flake to the composites before sintering which reached the joining required smoothness.
    Using four different kinds of low melting point alloys: commercial Liquid Ultra Ga78In14Sn8, and three kinds of homemade as thermal interface materials (TIM) to join diamond composites with commercial substrates (aluminum nitride, silicon, sapphire). The melting point of these TIM are 11, 80, 100, and 120 C respectively.
    Optimization homemade TIM joining modules enhance 15-39% thermal conductivity comparing with commercial Liquid Ultra. In thermal cycle tests carried out from 25 °C to 85 °C with 1000 cycles, as the melting point of TIM increases, joining modules become more durable. The 120 °C TIM joining modules remained over 90% thermal conductivity after 1000 cycles. By contrast, commercial Liquid Ultra joining modules only remained 63-82 % thermal conductivity after 1000 cycles. Consequently, homemade TIM possesses highly commercial capacity.

    摘 要 I 目 錄 III 圖目錄 X 表目錄 X 壹、 前言 1 貳、 文獻回顧 3 2.1. 散熱材料的重要性 3 2.2. 散熱材料的發展 5 2.2.1. 傳統散熱材料 6 2.2.2. 先進散熱材料 7 2.3. 金屬基複合材料 10 2.3.1. 金屬基複合材料常見製程 10 2.3.2. 複合材料理論性質計算 15 2.3.3. 相關研究成果 16 2.4. 影響鑽石複材熱傳值因素 21 2.4.1. 鑽石與金屬基材的界面潤濕性 21 2.4.2. 鑽石粒徑與體積分率 24 2.4.3. 界面層厚度 25 2.4.4. 鑽石晶面差異 27 2.5. 熱循環測試 29 2.6. 熱界面材料 30 2.6.1. 熱界面材料的重要性 30 2.6.2. 熱界面材料的種類及特性 30 2.6.3. 相關研究成果 32 2.7. 常見電路基板 34 參、 實驗方法 36 3.1. 實驗設計與流程 36 3.1.1. 原料來源及其性質 36 3.1.2. 實驗設計與原理 38 3.1.3. 實驗規劃 39 3.2. 乾式混粉與冷壓成型 41 3.3. 水平爐管真空液相燒結 41 3.4. 基板接合 43 3.5. 低熔點合金之製作 44 3.6. 熱循環測試 44 3.7. 複合材料與接合封裝的性質分析 46 3.7.1. 緻密度量測 46 3.7.2. 熱傳導係數量測 47 3.7.3. 表面粗糙度量測 51 3.7.4. 微結構觀察 52 肆、 結果與討論 53 4.1. 接合前銀銅基鑽石複材性質 53 4.1.1. 不同燒結溫度對複材熱性質影響 54 4.1.2. 不同壓胚壓力對複材熱性質影響 55 4.1.3. 複材之耐熱循環能力 56 4.1.4. 鑽石銀銅基複材表面粗糙度與熱傳值誤差校正 58 4.2. 鑽石銀銅基複材表面平整化處理 61 4.2.1. 銀銅鈦薄片法 62 4.2.2. 銅鈦薄片法 64 4.3. 市售低熔點合金接合模組 67 4.3.1. 接合後之散熱模組熱性質 68 4.3.2. 高溫少週期及低溫多週期熱循環測試 71 4.4. 低熔點合金之熔點調整 73 4.4.1. 低熔點合金之選取 73 4.4.2. 低熔點合金接合模組 75 4.4.3. 低溫多週期熱循環測試 80 4.4.4. 高溫少週期熱循環測試 83 4.5. 銀銅片接合模組 89 4.5.1. 銀銅片之製作 89 4.5.2. 銀銅片與矽基板接合模組 93 4.5.3. 銀銅片與氧化鋁基板接合模組 116 4.5.4. 銀銅片與氮化鋁基板接合模組 128 4.5.5. 電子微探分析儀分析銀銅接面 141 4.5.6. 討論 145 伍、 結論 147 陸、 未來研究方向建議 149 柒、 參考文獻 150

    1. Moore, G.E., Cramming more components onto integrated circuits Proceedings of the IEEE, April 19, 1965: p. (Reprinted from Electronics, pp. 114-117, April 19, 1965),.
    2. Gallagher, J.P., Energy Challenges for ICT, in Ict-Energy Concepts for Energy Efficiency and Sustainability. 2017, InTech Open Access Publishers.
    3. Pop, E., Energy dissipation and transport in nanoscale devices. Nano Research, 2010. 3(3): p. 147-169.
    4. Mahajan, R., C.-p. Chiu, and G. Chrysler, Cooling a microprocessor chip. Proceedings of the IEEE, 2006. 94(8): p. 1476-1486.
    5. Banerjee, K., S.-C. Lin, and V. Wason. Leakage and variation aware thermal management of nanometer scale ICs. in IMAPS-Advanced Technology Workshop on Thermal Management. 2004.
    6. Zweben, C., Advances in composite materials for thermal management in electronic packaging. Jom, 1998. 50(6): p. 47-51.
    7. Zweben, C., Thermal materials solve power electronics challenges. Power Electronics Technology, 2006. 32(2): p. 40-47.
    8. Barcena, J., Innovative packaging solution for power and thermal management of wide-bandgap semiconductor devices in space applications. Acta Astronautica, 2008. 62(6-7): p. 422-430.
    9. Rowcliffe, D., Cemented Diamond Composites for Thermal Management Applications. Proc. IMAPS ATW, Denver, CO, USA, 2002.
    10. 黃坤祥, 粉末冶金學. 2014: 粉體及粉末冶金協會.
    11. Coupard, D., J. Goni, and J. Sylvain, Fabrication and squeeze casting infiltration of graphite/alumina preforms. Journal of materials science, 1999. 34(21): p. 5307-5313.
    12. Orbulov, I.N., Á. Németh, and J. Dobránszky. Composite production by pressure infiltration. in Materials Science Forum. 2008. Trans Tech Publ.
    13. Maizza, Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 2007. 8(7-8): p. 644-654.
    14. Trinh, H.Q., Preparation of red nitride phosphor from powder mixture of metal nitrides using spark plasma sintering. Current Applied Physics, 2014. 14(8): p. 1051-1056.
    15. German, R.M., K.F. Hens, and J.L. Johnson, Powder metallurgy processing of thermal management materials for microelectronic applications. International Journal of Powder Metallurgy, 1994. 30(2): p. 205-215.
    16. Weber, L. and R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X= Cr, B) diamond composites. Scripta Materialia, 2007. 57(11): p. 988-991.
    17. Tavangar, R., J.M. Molina, and L. Weber, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scripta Materialia, 2007. 56(5): p. 357-360.
    18. Weber, L. and R. Tavangar. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration—potential and limits. in Advanced Materials Research. 2009. Trans Tech Publ.
    19. Abyzov, A.M., S.V. Kidalov, and F.M. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. Journal of Materials Science, 2011. 46(5): p. 1424-1438.
    20. Mizuuchi, K., Processing of diamond-particle-dispersed silver-matrix composites in solid–liquid co-existent state by SPS and their thermal conductivity. Composites Part B: Engineering, 2012. 43(3): p. 1445-1452.
    21. 錢賢峻, 鑽石銀基複材與基板接合之熱界面材料開發. 清華大學材料科學工程學系碩士論文, 2017: p. 1-134.
    22. Kerns, J.A., Dymalloy: a composite substrate for high power density electronic components. 1995, Lawrence Livermore National Lab., CA (United States).
    23. Yoshida, K. and H. Morigami, Thermal properties of diamond/copper composite material. Microelectronics reliability, 2004. 44(2): p. 303-308.
    24. Ekimov, E. A., Suetin, N. V., Popovich, A. F., Ralchenko, V. G., Gromnitskaya, E. L., & Modenov, V. P., Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites. Inorganic Materials, 2008. 44(3): p. 224-229.
    25. Schubert, T., Zieliński, W., Michalski, A., Weißgärber, T., & Kieback, B., Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications. Scripta Materialia, 2008. 58(4): p. 263-266.
    26. Chung, C.-Y., Effect of titanium addition on the thermal properties of diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering technique. The Scientific World Journal, 2014. 2014.
    27. Lee, M.-T., High thermal conductive diamond/Ag–Ti composites fabricated by low-cost cold pressing and vacuum liquid sintering techniques. Diamond and Related Materials, 2014. 44: p. 95-99.
    28. Che, Q., The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering. Materials Science in Semiconductor Processing, 2015. 30: p. 104-111.
    29. He, J., Wang, X., Zhang, Y., Zhao, Y., & Zhang, H., Thermal conductivity of Cu–Zr/diamond composites produced by high temperature–high pressure method. Composites Part B: Engineering, 2015. 68: p. 22-26.
    30. Nogi, K., Wettability of diamond by liquid pure metals. Materials Transactions, JIM, 1994. 35(3): p. 156-160.
    31. Chu, K., Jia, C., Guo, H., & Li, W., On the thermal conductivity of Cu–Zr/diamond composites. Materials & Design, 2013. 45: p. 36-42.
    32. Schubert, T., Trindade, B., Weißgärber, T., & Kieback, B., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Materials Science and Engineering: A, 2008. 475(1-2): p. 39-44.
    33. Barzilai, S., First-principles modeling of metal layer adsorption on CaF2 (1 1 1). Surface Science, 2008. 602(8): p. 1517-1524.
    34. Eustathopoulos, N., M.G. Nicholas, and B. Drevet, Wettability at high temperatures. Vol. 3. 1999: Elsevier.
    35. Ren, S., Shen, X., Guo, C., Liu, N., Zang, J., He, X., & Qu, X. Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy. Composites Science and Technology, 2011. 71(13): p. 1550-1555.
    36. Kang, Q., Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites. Journal of Alloys and Compounds, 2013. 576: p. 380-385.
    37. Ekimov, E. A., Suetin, N. V., Popovich, A. F., & Ralchenko, V. G., Thermal conductivity of diamond composites sintered under high pressures. Diamond and related materials, 2008. 17(4-5): p. 838-843.
    38. Xue, C. and J. Yu, Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface. Surface and Coatings Technology, 2013. 217: p. 46-50.
    39. Ruch, P. W., Beffort, O., Kleiner, S., Weber, L., & Uggowitzer, P. J., Selective interfacial bonding in Al (Si)–diamond composites and its effect on thermal conductivity. Composites science and technology, 2006. 66(15): p. 2677-2685.
    40. Tan, Z., Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Materials & Design, 2013. 47: p. 160-166.
    41. Monje, I., E. Louis, and J. Molina, Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites Part A: Applied Science and Manufacturing, 2013. 48: p. 9-14.
    42. Chen, H., C. Jia, and S. Li, Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques. Journal of Materials Science, 2012. 47(7): p. 3367-3375.
    43. 楊邦朝, 陳文媛, 曾理, 及 胡永達, 熱界面材料及其應用. 2006.
    44. Gwinn, J.P. and R. Webb, Performance and testing of thermal interface materials. Microelectronics Journal, 2003. 34(3): p. 215-222.
    45. Mahajan, R., C. Chiu, and R. Prasher, Thermal interface materials: a brief review of design characteristics and materials. Electronics Cooling, 2004. 10(1): p. 10.
    46. Chung, D., Thermal interface materials. Journal of Materials Engineering and Performance, 2001. 10(1): p. 56-59.
    47. Chiu, C.-P., J.G. Maveety, and Q.A. Tran, Characterization of solder interfaces using laser flash metrology. Microelectronics Reliability, 2002. 42(1): p. 93-100.
    48. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., & Fischer, J. E., Thermal properties of carbon nanotubes and nanotube-based materials. Applied physics A, 2002. 74(3): p. 339-343.
    49. Liu, C., Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Applied Physics Letters, 2004. 84(21): p. 4248-4250.
    50. Yu, A., Ramesh, P., Itkis, M. E., Bekyarova, E., & Haddon, R. C., Graphite nanoplatelet− epoxy composite thermal interface materials. The Journal of Physical Chemistry C, 2007. 111(21): p. 7565-7569.
    51. Shahil, K.M. and A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano letters, 2012. 12(2): p. 861-867.
    52. LED封裝領域用陶瓷基板現狀與發展簡要分析. Available from: https://www.ledinside.com.tw/knowledge/20120514-21055.html.
    53. 矽基板. Available from: https://www.digitimes.com.tw/tw/dt/n/shwnws.asp?cnlid=10&cat=20&cat1=&id=294832.
    54. LED在矽基板上封裝之創新技術. Available from: https://www.digitimes.com.tw/tw/dt/n/shwnws.asp?cnlid=13&cat=&cat1=&id=203332.
    55. Available from: http://www.factdiamond.com./.
    56. 銀品科技. 2018; Available from: https://www.agpro.com.tw/index.php.
    57. Available from: http://www.uni-onward.com.tw/.
    58. 台灣格雷蒙股份有限公司. Available from: http://www.gredmann.com/.
    59. 凱立企業. Available from: https://062141216.web66.com.tw/.
    60. 島久藥品. Available from: http://www.hi-sun.com.tw/product-detail-864595.html.
    61. 璦司柏電子股份有限公司. Available from: http://www.icprotect.com.tw/index.html.
    62. Bhaumik, S., G. Upadhyaya, and M. Vaidya, Alloy design of WC-10Co hard metals with modifications in carbide and binder phases. International Journal of Refractory Metals and Hard Materials, 1992. 11(1): p. 9-22.
    63. <LFA447_Brochure.pdf>.
    64. Surface Roughness. Available from: http://dragon.ccut.edu.tw/~mejwc1/p-mea/content/ch_18.pdf.
    65. 謝孟君, 銀銅基材對鑽石/銀銅-鈦複合材料熱性質之影響, 清華大學材料科學工程學系碩士論文. 2015. p. 1-157.
    66. Boyer, H.E. and T.L. Gall, Metals handbook; desk edition. 1985.
    67. Schadel, H. and C. Birchenall, The vapor pressure of silver. JOM, 1950. 2(9): p. 1134-1138.
    68. Company, N., Thermal Diffusivity-Thermal Conductivity: Method, Technique, Applications.
    69. Prasher, R.S., Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. Journal of Heat Transfer, 2001. 123(5): p. 969-975.
    70. Roy, C. K., Bhavnani, S., Hamilton, M. C., Johnson, R. W., Nguyen, J. L., Knight, R. W., & Harris, D. K., Investigation into the application of low melting temperature alloys as wet thermal interface materials. International Journal of Heat and Mass Transfer, 2015. 85: p. 996-1002.
    71. Coollaboratory Liquid Ultra. Available from: http://www.coollaboratory.com/product/coollaboratory-liquid-ultra/.
    72. Committee, A.I.H., G.W. Powell, and ASM, Metals handbook: Failure analysis and prevention. 1986: American Society for Metals.
    73. 賴羿安, 銅基鑽石複材與基板接合之熱界面材料開發. 2017, 清華大學材料科學工程學系碩士論文. 2017 p. 1-192.
    74. Shu, Y., Hashemabad, S. G., Ando, T., & Gu, Z., Ultrasonic powder consolidation of Sn/In nanosolder particles and their application to low temperature Cu-Cu joining. Materials & Design, 2016. 111: p. 631-639.
    75. Ga-In-Sn Ternary Phase Diagram. Available from: http://images.slideplayer.com/36/10652587/slides/slide_41.jpg.
    76. Reflow soldering. Available from: https://en.wikipedia.org/wiki/Reflow_soldering.
    77. Ag-Cu Phase Diagram. Available from: http://www.chegg.com/homework-help/questions-and-answers/phase-diagram-consider-cu-ag-alloy-ag-20-wt-composition-solid-solutions-cu-ag-l-signifies--q7300343.

    QR CODE