簡易檢索 / 詳目顯示

研究生: 王貽樟
Wang, Yi-Jhang
論文名稱: Interfacial Electronic Structure of Ga2O3 (Gd2O3) grown on n-Ge studied by Synchrotron Radiation Photoemission
利用同步輻射光解析氧化鎵(氧化釓)成長於鍺基板之介面電子結構研究
指導教授: 洪銘輝
Hong, Minghwei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 74
中文關鍵詞: 磊晶x光電子能譜高介電常數同步輻射
外文關鍵詞: MBE, PES, high-k, Ge
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The interfacial electronic structures of Ga2O3 (Gd2O3) (GGO) are determined using synchrotron radiation photoemission. High brightness from synchrotron radiation with tunable photon energies and high resolution allows us to retrieve the electronic structures at various depths with great clarity. However, there are discrepancy between the measured data and calculated values particular at low excited photon energies. The as-deposited sample and the sample with post N2 annealing show Ge-O-Ga and Ge-O-Gd bonds exist in the interface. Upon CF4-plasma followed by post N2 annealing treatment, the interfacial bonds are replaced by GdGeF-related oxides that reside at the GGO/Ge interface and GGO surface. The CF4-plasma treatment lets the Ga2O3 in upper GGO film transform to elemental Ga, Gd-related oxides shift to high EB state generated by polarized effect, and it also lets some elemental Ge diffuse to GGO surface. The post annealing process behind the CF4 treatment may give the energy for those molecules for further rearrangements in the oxide film such as “recovering behaviors” of elemental Ga and the high EB feature of Gd-related oxides shift back to original positions. And it also generates more GdGeF-related oxides. Moreover, upward band bending occurs on both the high-k side and Ge side, and it causes the valence band offset by a magnitude of 2.95 eV.


    利用同步輻射光解析混和氧化鎵與氧化釓在n型鍺上的介面電子結構,同步輻射擁有高強度及高解析度使得我們能對不同深度的電子結構有很好的解析。然而實驗數據與理論計算的結果在電子動能很小的時候是不相符合的,在未經退火處理和只有經過氮氣退火的結果顯示介面處已有鍺與氧化鎵和氧化釓的鍵結存在,藉由四氟化碳電漿和退火處理,介面層被另一種鍺、氟和氧化釓的新氧化層取代,此氧化層同時存在於鍺與混和氧化鎵、氧化釓的介面處與混和氧化鎵、氧化釓的表面。在四氟化碳電漿處理的試片發現原本的氧化鎵被還原成元素態鎵,同時氟使得氧化釓產生極化效應移動到更高的束縛能,在退火處理後,發生”恢復作用”使得元素鎵及極化的氧化釓變回氧化鎵和氧化釓,同時產生更多的鍺、氟和氧化釓的新氧化層,此外,能帶彎曲的現象同時在介面的半導體端和高介電係數材料端都被發現,最後我們得出價帶失配的大小是2.95電子伏特。

    Table of Contents I Table Captions II Figure Captions III Chapter 1 1 1.1 Background 1 1.2 high-dielectrics and germanium substrate 4 1-3 Motivation 8 Chapter 2 10 2.1 Multi-chamber UHV-MBE systems 10 2.1.1Molecular beam epitaxy (MBE) 10 2.1.2 Reflection high energy electron diffraction (RHEED) 14 2.2 photoemission spectroscopy 14 2.2.1 Introduction of photoemission spectroscopy 14 2.2.2 Synchrotron radiation 21 2.2.3 Beam-line specifications 25 Chapter 3 31 3.1 Surface cleaning 31 3.2 Oxide deposition 33 3.2.1 MBE-GGO deposition 33 3.2.2 MBE-Al2O3 deposition 34 3.3 Post annealing and CF4-plasma treatment 34 3.4 PES Analysis 34 3.5 Cross-sectional TEM 35 3.6 Metal electrode deposition 36 3.7 Electrical Measurement process 37 Chapter 4 38 4.1. Chemical analysis 38 4.1.1 IMFP of MBE Al2O3/GGO/n-Ge system 38 4.1.2 Post annealing treatment and CF4-plasma treatment 43 4.1.3 Chemical analysis for CF4-plasma treatment 44 4.1.4 Mechanism for CF4 plasma and post annealing 55 4.1.5 Energy band diagram 65 Chapter 5 68 Chapter 6 70

    [1] S. M. Sze, “Physics of semiconductor” 3rd edition, Wiley, New York (2002)
    [2] ”Device Electronic For Integrated Circuits” edited by Muller, Richard S., and Theodore I. Kamins, John Wiley & sons (1986)
    [3] Intel Corporation, website: http://www.intel.com
    [4] G. Timp, J. Bude, K. K. Bourdelle, J. Garno, A. Ghetti, H. Gossmann, M. Green, G. Forsyth, Y. Kim, R. Kleimann et al., Tech. Dig. Int. Electron Devices Meet. 1999, p.55
    [5] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, VLSI Tech. Dig. 2000, p. 90
    [6] Michel Houssa, High-k gate dielectrics, Institute of Physics, Bristol (2004)
    [7] M. Depas, B. Vermieire, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, Solid-State Electron. 38, 1465 (1995)
    [8] International Technology Roadmap for Semiconductor, Semiconductor Industry Association (2001)
    [9] G. D. Wilk et al., Journal of Applied Physics, 89, 5243 (2001)
    [10] J. Robertson and B. Falabretti, Materials Science and Engineering B 135, 267 (2006)
    [11] J. Robertson and B. Falabretti, Journal of Applied Physics 100, 014111 (2006)
    [12] T. S. Lay et al., Solid-State Electronics 45, 45, 9, 1679-1682 (2001)
    [13]W. C. Lee et al., Journal of Crystal Growth 278, 619-623 (2005)
    [14] G. K. Dalapati et al., Appl. Phys. Lett. 91, 242101 (2007)
    [15] H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 87, 182904 (2005)
    [16]Y. Xuan, H. C. Lin, P. D. Ye and G. D. Wilk, Appl. Phys. Lett. 88, 263518 (2006)
    [17] H. Kim, P. C. McIntyre, and K. C. Saraswat, Appl. Phys. Lett. 82, 106-108 (2003)
    [18] S. Chatterjee, Y. kuo and J. Lu, Microelectronic engineering 85, 202-209 (2008)
    [19] Simon M. Sze, Kwok K. Ng.”Semiconductor Device Physics and Technology” Wiley Interscience (1936)
    [20] D. K. Schroder, “Semiconductor material and device characterization” 3rd edition Wiley Interscience (2006)
    [21] M. Hong, J. P. Mannaerts, J. E. Bower, J. Kwo, M. Passlack, W. Y. Hwang, and L. W. Tu, J. Cryst. Growth, 175/176, 422 (1997)
    [22] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, and A. M. Sergent, Appl. Phys. Lett. 7, 1116 (1999)
    [23] L. K. Chu, T. D. Lin, M. L. Huang, R. L. Chu, C. C. Chang, J. Kwo, and M. Hong, Appl. Phys. Lett. 94, 202108 (2009)
    [24] C. H. Lee, T. D. Lin, L. T. Tung, M. L. Huang, M. Hong, and J. Kwo, J. Vac. Sci. Technol. B 26, 1128 (2008)
    [25] R. Xie, M. Yu, M. Y. Lai, L. Chan, and C. Zhu, Appl. Phys. Lett. 92, 163505 (2008)
    [26] R. Xie, Wei He, Mingbin Yu, and Chunxiang Zhu., Appl. Phys. Lett. 93, 073504 (2008)
    [27] R. Xie, et al., IEEE. Vol56, No.6 (2009).
    [28] Alfred Cho, Molecular Beam Epitaxy, AIP Press, New York.
    [29] Marian A. Herman, Helmut Sitter, Molecular Beam Epitaxy : Fundamentals and current status, Springer-Verlag, New York (1989)
    [30] S. M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, Wiley (2001)
    [31] Handbook of electronic and photonic materials, edited by Safa Kasap and Peter Capper, Springer, New York (2006)
    [32] K. Tsubouchi, I. Ohkubo, T. Harada, H. Kumigashira, Y. Matsumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, and M. Oshima, Materials Science and Engineering B, 148, 16-18 (2008).
    [33]T. Lippmaa, Journal of Crystal Growth, 146, 326-333 (1995)
    [34]John C. Vickerman and Ian S. Gilmore, "Surface Analysis-The Principal Techniques" 2nd Edition, Wiley (2009)
    [35] Simon J. Garrett et al, “Introduction to Surface Analysis” (2001)
    [36] J. Schwinger, Phys. Rev. 75, 1912(1949)
    [37] Adopted from the website. (http://www.nsrrc.org.tw)
    [38]H. Winick and S. Doniach, Synchrotron Radiation Research, Plenum, New York (1980)
    [39] M. P. Seah and D. P. Dench, “Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids”, Surf. Interface Anal. 1, 2 (1979)
    [40] D. Schmeisser, R. D. Schnell, A. Bogen, F. J. Himpsel, D. Roeger, G. Langdgren, and J.F. Morar, Surf. Sci.172, 455 (1986)
    [41]D. Kuzum, Stantford University, (2009)
    [42]R. Xie, et al., in IEDM Tech. Dig. , 393 (2008).
    [43] J. J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables, Vol 32, issue 1 (1985)
    [44]O. Renault, L. Fourdrinier, E. Martinez, L. Clavelier, C. Leroyer, N. Barrett, and C. Crotti, Appl. Phys. Lett. 96, 052112 (2007)
    [45]A. Dimoulas, D. Tsoutsou, Y. Panayiotatos, A. Sotiropoulos, G. Mavrou, S. F. Galata, and E. Golias, Appl. Phys. Lett. 96, 012902 (2010)
    [46] C. H. Lee, T. D. Lin, L. T. Tung, M. L. Huang, M. Hong, and J. Kwo, J. Vac. Sci. Technol. B 26, 1128 (2008)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE