研究生: |
葉昇平 Yeh,Sheng-Pin |
---|---|
論文名稱: |
蕭特基金氧半電晶體之設計及應用 Design and Application of Schottky Barrier MOSFETs |
指導教授: |
連振炘
Lien,Chenhsin 施君興 Shih,Chun-Hsing |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 金屬矽化物 、蕭特基金氧半電晶體 、雜訊 、雙重功函數閘極 |
外文關鍵詞: | Metal Silicide, Schottky Barrier MOSFET, Noise, Dual Workfunction Gate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
考慮源汲極寄生電阻效應,蕭特基金氧半電晶體成為下世代奈米級金氧半電晶體發展的必然趨勢。但是其元件的發展仍存在許多挑戰,進而限制了它在互補式金氧半電路上更進一步的應用。本論文主要探討蕭特基金氧半電晶體的基本元件特性,利用二維元件模擬軟體分析其相關的元件設計參數,進行元件設計最佳化。進而提出創新的結構來改善其繼續微縮的可行性,並探討蕭特基金氧半元件在雜訊方面的限制及可能機制。
在蕭特基金氧半電晶體的元件設計中,雙向導通行為是最重要的參考因素,進一步探討各項元件參數對電性行為的影響,可以發現金屬源汲極的蕭特基能障高度、源汲極與閘極的偏移量、閘氧層厚度皆對元件的電流特性有顯著的影響。若適當地選取這些元件參數,可以對蕭特基金氧半電晶體元件進行最佳化的設計。對於具備摻雜析離的蕭特基金氧半元件,也詳盡的探討析離層對元件特性的影響。這層高濃度的摻雜析離層雖可改善元件的特性,但在短通道微縮時,會因高濃度的通道摻雜及超薄閘氧層的應用,使得元件的雙向導通行為顯著退化。
為了因應蕭特基金氧半元件繼續微縮的可行性,提出一種具雙重功函數閘極的創新蕭特基元件架構,並能結合既有互補式金氧半製程步驟來製作。此雙重功函數閘極結構能有效改善於薄閘氧層時的雙向導通退化行為,在蕭特基元件的閘氧層及通道長度繼續微縮時,仍能同時改善短通道效應及雙向導通行為。同時,此雙重功函數閘極的架構可結合摻雜析離層技術將蕭特基電晶體進一步最佳化。
而在蕭特基金氧半元件的雜訊行為上,依其製程觀點及特殊電性行為,提出潛在的雜訊來源機制。蕭特基金氧半電晶體除了擁有與傳統金氧半元件相同的雜訊來源外,會因金屬源汲極的引入,增加從接面缺陷所造成的雜訊,使得蕭特基元件的雜訊將大於傳統金氧半電晶體。特別的,這些雜訊會因在不同電壓操作、不同的源汲極金屬矽化物,而有不同的行為。
As MOSFETs scale into nanoscale regime, extensively minimizing source/drain depth limits the improvement of driving drain current due to the increased series resistance. By eliminating implanted ultra-shallow junctions, the metallic Schottky Barrier MOSFET (SBMOS) becomes a most attracting candidate in deep sub-50 nm regime. The objective of this dissertation is to explore in depth the design and application of SBMOS devices using two-dimensional numerical simulations for the use of SBMOS in future CMOS technologies.
The current-voltage characteristics of SBMOS are highly dependent on Schottky barrier height, source/drain to gate misalignment, and gate-oxide thickness. Ambipolar conduction of SBMOS can be optimized by an appropriate choice of these primary parameters. A dopant segregated layer can efficiently modify the Schottky barriers to suppress the off-state ambipolar conduction and simultaneously to enhance the on-state driving current. However, apparent degradations of ambipolar conduction in SBMOS are observed when a thin gate-insulator or a heavy halo profile is used for scaled short-channel devices. A novel Dual Workfunction Gate architecture is innovated to optimize SBMOS by tailoring Schottky barrier distributions through vertical gate engineering. An optimal SBMOS can be achieved with enhanced driving current, minimized ambipolar conduction and suitable short-channel effect.
This study also elucidates the latent noise mechanisms in SBMOS devices. The complex noise problems in SBMOS arise from the particular ambipolar conduction and the additional interface states at metallic source/drain junctions. In addition to the excess noise of conventional MOSFETs, the interface traps at the metallic source/drain are keys to the overall noise characteristics of SBMOS. Most possible noise sources under various operating conditions are summarized herein to provide a comprehensive understanding of how noise potentially limits the practical applications of SBMOS devices.
[1] C. J. Koeneke, S. M. Sze, R. M. Levin, and E. Kinsbron, “Schottky MOSFET for VLSI, ” in IEDM Tech. Dig., 1981, pp. 367-370.
[2] C. Wang, J. P. Snyder, and J. R. Tucker, “Sub-40nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett., vol. 74, pp. 1174-1176, Feb. 1999.
[3] ITRS, International Technology Roadmap for Semiconductors, 2003 edition.
[4] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, pp. 1048-1058, May 2006.
[5] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky source/drain MOSFET on Silicon-on-Insulator substrate demonstration of sub-50-nm n-type devices with metal gate,” Jpn. J. Appl. Phys., vol. 38, pp. 6226-6231, Nov. 1999.
[6] M. Nishisaka, S. Matsumoto, and T. Asano, “Schottky source/drain SOI MOSFET with shallow doped extension,” Jpn. J. Appl. Phys., vol. 42, pp. 2009-2013, Apr. 2003.
[7] J. Guo and M. S. Lundstrom, “A computational study of thin-body, double gate, Schottky barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 49, pp. 1897-1902, Nov. 2002.
[8] M. Jang, Y. Kim, M. Jeon, C. Choi, B. Park, and S. Lee, “Ambipolar carrier injection characteristics of Erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 730-732, Nov. 2006.
[9] J. Knoch and J. Appenzeller, “Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 81, pp. 3082-3084, Oct. 2002.
[10] D. Misra and V. S. Simhadri, “A survey of the potential of an IrSi Schottky barrier MOSFET based on simulation studies,” Solid-State Electronics, vol. 35, pp. 829-833, Jun. 1992.
[11] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, T. J. King, and C. M. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” in IEDM Tech. Dig., 2000, pp. 57-60.
[12] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using Ytterbium silicide,” IEEE Electron Device Lett., vol. 25, pp. 565-567, Aug. 2004.
[13] S. Zhu and M. F. Li, “Drivability improvement in Schottky barrier source/drain MOSFETs with strained-Si channel by Schottky barrier height reduction,” Solid-State Electronics, vol. 50, pp. 1337-1340, Jul. 2006.
[14] T. Yamamoto, Y. Yamashita, M. Harada, N. Taoka, K. Ikeda, K. Suzuki, O. Kiso, N. Sugiyama, and S. Takagi, “High performance 60nm length Germanium p-MOSFETs with Ni Germanide metal source/drain,” in IEDM Tech. Dig., 2007, pp. 1041-1043.
[15] D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, “Fermi-level depinning for low-barrier Schottky source/drain transistors,” Appl. Phys. Lett., vol. 88, pp. 0121051-0121053, Jan. 2006.
[16] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C. Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong, “Schottky-barrier S/D MOSFETs with high-K gate dielectric and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, May 2004.
[17] M. Tao, S. Agarwal, D. Udeshi, N. Basit, E. Maldonado, and W. P. Kirk, “Low Schottky barriers on n-type silicon (001),” Appl. Phys. Lett., vol. 83, pp. 2593-2595, Sep. 2003.
[18] H. S. Wong, A. T. Y. Koh, H. C. Chin, L. Chan, G. Samudra, and Y. C. Yeo, “Source and Drain series resistance reduction for N-channel transistors using solid Antimony(Sb) segregation (SSbS) during silicidation,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 756–758, Jul. 2008.
[19] A. Kaneko, A. Yagishita, K. Yahashi, K. Kubota, M. Omura, K. Matsuo, I. Mizushima, K. Okano, H. Kawasaki, T. Izumida, T. Kanemura, N. Aoki, A. Kinoshita, J. Koga, S. Inaba, K. Ishimaru, Y. Toyshima, H. Ishiuchi, K. Suguro, K. Eguchi, and Y. Tsunashima, “High-performance FinFET with dopant-segregated Schottky source/drain,” in IEDM Tech. Dig., 2006, pp. 893-896.
[20] R. P. Lee, T.-Y. Liow, K. -M. Tan, A. E. -J. Lim, C.-S. Ho, K. M. Hoe, M. Y. Lai, T. Osipowicz, G.-Q. Lo, G. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel epitaxial Nickel Aluminide-Silicide with low Schottky-barrier and series resistance for enhanced performance of dopant-segregated source/drain n-channel MuGFETs,” in VLSI Symp. Dig., 2007, pp. 108-109.
[21] G. Larrieu, E. Dubois, R. Valentin, N. Breil, F. Danneville, G. Dambrine, J. P. Raskin, and J. C. Pesant, “Low temperature implementation of dopant-segregated band-edge metallic S/D junction in thin-body SOI p-MOSFETs,” in IEDM Tech. Dig., 2007, pp. 147-150.
[22] Z. Zhang, Z. Qiu, P.-E. Hellstrom, G. Malm, J. Olsson, J. Lu, M. Ostling, and S.-L. Zhang, “SB-MOSFETs in UTB-SOI featuring PtSi source/drain with dopant segregation,” IEEE Electron Device Lett., vol. 29, pp. 125-127, Jan. 2008.
[23] J. Knoch, M. Zhang, Q. T. Zhao, St. Lenk, S. Mantl, and J. Appenzeller, “Effective Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistors using dopant segregation,” Appl. Phys. Lett., vol. 87, pp. 263505, Dec. 2005.
[24] B. -Y. Tsui and C.-P. Lin, “A novel 25nm modified Schottky-barrier FinFET with high performance,” IEEE Electron Device Lett., vol. 25, pp. 430-432, Jun. 2004.
[25] A. Kinoshita, C. Tanaka, K. Uchida, and J. Koga, “High-performance 50-nm-gatelength Schottky-S/D MOSFETs with dopant-segregation junctions,” in VLSI Symp. Tech. Dig., 2005, pp. 158-159.
[26] M. Ieong, P. M. Solomon, S. E. Laux, H. P. Wong, and D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model,” in IEDM Tech. Dig., 1998, pp. 733-736.
[27] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of Schottky and Ohmic contacts,” IEEE Trans. Electron Devices, vol. 47, pp. 103-108, Jan. 2000.
[28] R. A. Vega, “On the modeling and design of Schottky field-effect transistors,” IEEE Trans. Electron Devices, vol. 53, pp. 866-874, Apr. 2006.
[29] B. Winstead and U. Ravaioli, “Simulation of Schottky barrier MOSFET’s with a coupled quantum injection/Monte Carlo technique,” IEEE Trans. Electron Devices, vol. 47, pp. 1241-1246, Jun. 2000.
[30] L. Sun, X. Y. Liu, G. Du, and R. Q. Han, “Monte Carlo simulation of Schottky contact with direct tunneling model,” Semicond. Sci. Technol., vol. 18, pp. 576-581, May 2003.
[31] Synopsys MEDICI User‘s Manual, CA, 2006.
[32] R. S. Muller and T. I. Kamins, Device electronics for integrated circuits, Jon Wileys & Sons, 1988.
[33] C. R. Crowell and S. M. Sze, “Current transport in Metal-Semiconductor barriers,” Solid-State Electronics, vol. 9, pp. 1035-1048, 1966.
[34] S. Xiong, T. J. King, and J. Bokor, “A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain,” IEEE Trans. Electron Devices, vol. 52, pp. 1859-1867, Aug. 2005.
[35] J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electronics, vol. 13, pp. 1011-1023, 1970.
[36] N. Agrawal, J. Chen, Z. Hui, Y.-C. Yeo, S. Lee, D. S. H. Chan, M.-F. Li, G.. S. Samudra, “Interface barrier abruptness and work function requirements for scaling Schottky source-drain MOS transistors,” in Proc. SISPAD 2006, pp. 139-142.
[37] M. Zhang, J. Knoch, J. Appenzeller, and S. Mantl, “Improved carrier injection in ultrathin-body SOI Schottky-barrier MOSFETs,” IEEE Electron Device Lett., vol. 28, pp. 223-225, Mar. 2007.
[38] G. P. Lousberg, H. Y. Yu, B. Froment, E. Augendre, A. De Keersgieter, A. Lauwers, M. -F. Li, P. Absil, M. Jurczak, and S. Biesemans, “Schottky-Barrier Height lowering by an increase of the substrate doping in PtSi Schottky barrier source/drain FETs,” IEEE Electron Device Lett., vol. 28, pp. 123-125, Feb. 2007.
[39] Z. Zhang, J. Lu, Z. Qiu, P. -E Hellstrom, M. Ostling and S.-L. Zhang, “Performance Fluctuation of FinFETs with Schottky barrier source/drain,” IEEE Electron Device Lett., vol. 29, pp. 506-508, May 2008.
[40] A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida, and J. Koga, “Solution for high performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant-segregation technique,” in Symp. VLSI Tech. Dig., 2004, pp. 168-169.
[41] S. M. Sze, Physics of semiconductor devices, 2nd ed. New York: Wiley, 1981.
[42] D. Connelly, P. Clifton, C. Faulkner, and D. E. Grupp, “Ultra-thin-body fully depleted SOI metal source/drain n-MOSFETs and ITRS low-standby-power targets through 2018,” in IEDM Tech. Dig., 2005, pp. 972-975.
[43] J. Seger, P. -E. Hellstrom, B. G. Malm, M. V. Haartman, M. Ostling, and S.-L. Zhang, “Lateral encroachment of Ni-silicides in the source/drain regions on ultrathin silicon-on-insulator,” Appl. Phys. Lett., vol. 86, pp. 253507, Jun. 2005.
[44] J. Kedzierski, P. Xuan, V. Subramanian, J. Bokor, T. J. King, C. M. Hu, and E. Anderson, “A 20 nm gate-length ultra-thin body p-MOSFET with silicide source/drain,” Superlattices and Microstructures, vol. 28, pp. 445-452, Aug. 2000.
[45] C. Lavoie, F. M. d’Heurle, and S.-L. Zhang, “Silicides,” Handbook of semiconductor manufacturing technology, 2nd ed., Y. Nishi and R. Doering, Eds. Boca Raton, FL: CRC Press, 2007, ch.10.
[46] T. Yamauchi, A. Kinoshita, Y. Tsuchiya, J. Koga, and K. Kato, “1 nm NiSi/Si junction design based on first-principle calculation for ultimately low contact resistance,” in IEDM Tech. Dig., 2006, pp. 385-388.
[47] Z. Zhang, Z. Qiu, R. Liu, M. Ostling, and S.-L. Zhang, “Schottky-barrier height tuning by means of ion implantation into preformed Silicide films followed by drive-in anneal,” IEEE Electron Device Lett., vol. 28, pp. 565-568, Jul. 2007.
[48] T. Yamauchi, Y. Nishi, Y. Tsuchiya, A. Kinoshita, J. Koga, and K. Kato, “Novel doping technology for a 1nm NiSi/Si junction with dipoles comforting Schottky (DCS) barrier,” in IEDM Tech. Dig., 2007, pp. 963-966.
[49] M. Zhang, J. Knoch, S.-L. Zhang, S. Feste, M. Schroter, and S. Mantl, “Threshold voltage variation in SOI Schottky-barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 55, pp. 858-865, Mar. 2008.
[50] A. Chaudhry and M. J. Kumar, “Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review,” IEEE Trans. Device & Materials Reliability, vol. 4, pp. 99-109, Mar. 2004.
[51] Y. Li, R. Huang, Y. Cai, F. Zhou, X. Shan, X. Zang, and Y. Wang, “A novel dual-doping floating-gate (DDFG) Flash memory featuring low power and high reliability application,” IEEE Electron Device Lett., vol. 28, pp. 622-624, Jul. 2007.
[52] Synopsys TSUPREM-4 User’s Manual, Synopsys Inc., Mountain View, CA, 2006.
[53] W. Maszara, Z. Krivokapic, P. King, J. S. Goollgweon, and M. R. Lin, “Transistors with dual work function metal gate by single full silicidation (FUSI) of polysilicon gates,” in IEDM Tech. Dig., 2002, pp.367-370.
[54] J. Kedzierski, D. Boyd, P. Ronsheim, S. Zafar, J. Newbury, J. Ott, C. Carbral, M. Ieong, and W. Haensch, “Threshold voltage control in NiSi-gated MOSFETs through silicidation induced impurity segregation (SIIS),” in IEDM Tech. Dig., 2003, pp. 315-318.
[55] J. Yuan and Jason C. S. Woo, “A novel split-gate MOSFET design realized by a fully silicided gate process for the improvement of transconductance and output resistance,” IEEE Electron Device Lett., vol. 26, pp. 829-831, Nov. 2005.
[56] M. J. Deen and O. Marinov, “Noise in advanced electronic device and circuits,” in Proc. ICNF 2005, pp.3-12.
[57] C. Claeys and E. Simoen, “Impact of advanced processing modules on the low-frequency noise performance of deep-submicron CMOS technologies,” Microelectronic Reliability, vol. 40, pp.1815-1821, Nov. 2000.
[58] Z. Celik and T. Y. Hsiang, “Study of 1/f noise in N-MOSFET’s: Linear Region,” IEEE Trans. Electron Devices, vol. 32, pp. 2797-2801, Dec. 1985.
[59] T. Asano, Y. Maeda, G. Nakagawa, and Y. Arima, “Physical Random-number generator using Schottky source/drain SOI MOSFET,” Jpn. J. Appl. Phys., vol. 41, pp. 2306-2311, Apr. 2002.
[60] M. V. Haartman, J. Hallstedt, J. Seger, B. G. Malm, P. E. Hellstrom, and M. Ostling, “Low frequency Noise in SiGe channel pMOSFETs on ultra-thin body SOI with Ni-silicided Source/Drain,” in Proc. ICNF 2005, pp.307-310.
[61] K. Uchida, K. Matsuzawa, J. Koga, S. Takagi, and A. Toriumi, “Enhancement of hot-electron generation rate in Schottky source metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 76, pp. 3992-3994, Jun. 2000.
[62] H. Iwai, T. Ohguro, and S.-I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, vol. 60, pp. 157-169, Jan. 2002.
[63] M. Jang, Y. Kim, M. Jun, C. Choi, I. Baek, S. Lee, and B. Park, “Analysis of interface trap states at Schottky diode by suing equivalent circuit modeling,” J. Vac. Sci. Technol. B, vol. 25, pp. 82-85, Jan. 2007.
[64] G. Larrieu and E. Dubois, “Integration of PtSi based Schottky barrier pMOSFETs with a midgap tungsten,” IEEE Trans. Electron Devices, vol. 52, pp. 2720-2726, Dec. 2005.
[65] C. Lavoie, F. M. d’Heurle, C. Detavernier, C. Cabral Jr., “Towards implementation of a nickel silicide process for CMOS technologies,” Microelectronic Engineering, vol. 70, pp. 144-157, Jan. 2003.
[66] M. L. Reed and J. D. Plummer, “ Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys., vol. 63, pp.5776-5793, Jun. 1988.
[67] S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinor, and J. I. Lee, “Investigation of noise sources in platinum silicide Schottky barrier diodes,” Appl. Phys. Lett., vol. 80, pp. 1468-1479, Feb. 2002.
[68] H. H. Guttler, and J. H. Werner, “Influence of barrier inhomeogeneities on noise at Schottky contacts,” Appl. Phys. Lett., vol.56, pp.1113-1115, Mar. 1990.
[69] W. Dabrowski and K. Korbel, “Excess generation-recombination noise in reverse biased Schottky barrier diodes,” Solid-State Electronics, vol. 31, pp. 1657-1661, Apr. 1988.