簡易檢索 / 詳目顯示

研究生: 陳家慶
論文名稱: 陰極沉積鎳鈷氫氧化物與擬電容器儲能機制探討
Cathodic Deposition of Nickel Cobalt Hydroxides and the Charge Storage Mechanism of Pseudocapacitors
指導教授: 胡啟章
口試委員: 白育綸
張國興
胡啟章
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 210
中文關鍵詞: 氫氧化鎳氫氧化鈷鎳鈷氫氧化物
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本研究在實驗討論的前兩部分主要闡述兩個在超級電容器的應用上基礎但很重要的觀念。其一,擬電容材料的電化學可逆性在能量效率與電容維持率的表現上扮演著關鍵的角色。此部分的實驗,我們也成功地利用陰極沉積法分別合成出高比電容且具有典型材料特性的氫氧化鎳和氫氧化鈷。其二,陽離子效應對氫氧化鎳的相轉變以及循環壽命有著顯著的影響。我們利用電化學石英晶體微天平和其他實驗技術證實陽離子的嵌入/嵌出是氫氧化鎳氧化還原反應的必要步驟。而鋰離子流動性最佳;反之,由拉曼圖譜和掃描式電子顯微鏡的分析發現鉀離子的出入造成阿爾法相(α phase)的不穩定與結構破壞。此外,陽離子效應對氫氧化鎳的電致變色行為以及氧氣還原的催化能力,在長期壽命上的影響,與相轉變和結構破壞具有相當一致的趨勢。本研究的最後一部分則分別探討陰極沉積的不同變因,對於鎳鈷複合氫氧化物的形貌與電容行為表現的影響。最後,我們找出最佳的沉積條件,且發現當複合材料中的鈷鎳元素比為二比一時,鎳鈷複合氫氧化物有最高的比電容同時維持良好的功率特性。經過X光繞射儀(XRD)以及X光能量散射譜(EDS)的分析,最佳沉積條件下合成的鎳鈷複合氫氧化物為Ni0.32Co0.68(OH)2。Ni0.32Co0.68(OH)2 有非常好的功率特性以及循環壽命,且在非對稱超級電容器的測試下,Ni0.32Co0.68(OH)2-GS的能量密度與Ni(OH)2-GS相當,而其能量效率則更加優越,使Ni0.32Co0.68(OH)2在超級電容器的應用上具有非常大的潛力。


    Chapter 1 Introduction and Literature Review 1 1.1 Fundamentals of Electrochemistry 1 1.1.1 Electrochemical System and Reference Electrodes 1 1.1.2 Faradaic and Nonfaradaic Processes 6 1.1.3 Electrochemical Cells and Reaction Rate 6 1.1.4 Factors Affecting Electrode Reaction Rate and Current 10 1.1.5 Introduction to Mass-Transfer-Controlled Reactions 11 1.2 The Principle and Mechanism of Electrochemical Deposition of Transition Metal Oxides 15 1.3 Introduction of Supercapacitors 20 1.3.1 Classification of Supercapacitors 24 1.3.2 Key Factors of Electrode Materials Determining the Performance of Supercapacitors 28 1.4 Literature Review of Ni(OH)2, Co(OH)2 and Ni(OH)2/Co(OH)2 composites 35 1.4.1 Literature Review of Ni(OH)2 35 1.4.2 Literature Review of Co(OH)2 41 1.4.3 Literature Review of the Composites of Ni(OH)2 and Co(OH)2 43 1.5 Motive and Purpose 46 Chapter 2 Experimental Methods 48 2.1 Chemicals and Instruments 48 2.1.1 Chemicals 48 2.1.2 Instruments 48 2.2 Graphite Electrode Preparation and Pretreatment 49 2.3 Graphene Preparation 50 2.4 Electrodeposition Process 51 2.4.1 Three-Electrode System 51 2.4.2 Controlled-Current Techniques 53 2.5 Electrochemical Analysis Techniques 56 2.5.1 Linear Sweep Voltammetry (LSV) 56 2.5.2 Cyclic Voltammetry (CV) 60 2.5.3 Current-Reversal Chronopotentiometry (CD) 63 2.5.4 Electrochemical Quartz Crystal Microbalance (EQCM) 66 2.6 Textural Analysis 68 2.6.1 Scanning Electron Microscope (SEM) 68 2.6.2 Transmission Electron Microscopy (TEM) 69 2.6.3 X-ray Diffraction (XRD) 71 Chapter 3 Cathodic Deposition of Ni(OH)2 and Co(OH)2 for Asymmetric Supercapacitors 72 3.1 Introduction and Motive 72 3.2 Experimental 74 3.3 Electrochemical and Textural Characteristics of Ni(OH)2 and Co(OH)2 Synthesized by Cathodic Deposition 77 3.3.1 LSV Investigation 77 3.3.2 Chronopotentiograms (CPs) Investigation 79 3.3.3 Morphology and Crystalline Phase 84 3.3.4 Electrochemical Performance 88 3.4 The Influences of Electrochemical Reversibility of on the Performances of an Asymmetric Supercapacitor 96 3.4.1 Electrochemical Reversibility Effects on Charge-Discharge Performance 96 3.4.2 Electrochemical Reversibility Effects on Energy Efficiency and Ragone Plot 100 3.5 Conclusion 103 Chapter 4 Electrochemical Quartz Crystal Microbalance Studies of Cation Effect on Phase Transformation and Cycling Retention of Ni(OH)2 104 4.1 Introduction and Motive 104 4.2 Experimental 106 4.3 The Influence of Different Electrolytes on Capacitive Performances of Ni(OH)2 107 4.3.1 Cyclic Voltammetry Investigation and Crystalline phase 107 4.3.2 The Effect of Concentration of OH- in Different Electrolytes on Capacitive Performances 111 4.4 Electrochemical Quartz Crystal Microbalance (EQCM) Investigation of Cation Effect on Phase Transformation and Cyclic Retention 116 4.4.1 Mass Change during Redox Reactions of Ni(OH)2 in Different Electrolytes 116 4.4.2 Proposed Mechanism of Ni(OH)2 Redox Reaction and the Followed Theoretical Calculation 127 4.5 Cation Effect on the Morphology Destruction of Ni(OH)2 133 4.6 Exhibition of the Importance of Cations on Cycling Retention 139 4.7 Cation Effects on the Retention of the Capacity of Ni(OH)2 144 4.8 Conclusion 148 Chapter 5 The influences of different deposition factors on the morphology and the capacitive performance of Ni(OH)2 / Co(OH)2 composites 150 5.1 Introduction and Motive 150 5.2 Experimental 152 5.3 Effects of Deposition Current Density 153 5.4 Effect of Deposition Time 161 5.5 Effect of pH Value of Deposition Bath 165 5.6 Effect of Temperature of Deposition Bath 169 5.7 Effect of Co2+/Ni2+ Ratio in the Deposition Bath 177 5.8 Summary of the Effect of Deposition Factors on the Capacitive Performances and Morphology 179 5.9 Characterization and Exhibition of the Capacitive Performances of Ni0.32Co0.68(OH)2 182 5.10 Conclusion 191 Chapter 6 Conclusion and Future work 193 References…………………………………………………………..…197

    1. Bard, A.J. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd edition ed. 2001, New York: John Wiley & Sons Inc.
    2. Kanani, N., Electroplating: Basic Principles, Processes, and Practice. 2005, Oxford: Elsevier Advanced Technology.
    3. 張國興, 林., 胡啟章, 電化學合成奈米結構之過渡金屬氧化物與其應用. 化工技術, 民國98年4月. 第17卷(第4期).
    4. Pourbaix, M., Atlas of ElectrochemicalEquilibria in Aqueous Solutions. 1974, Texas: NACE.
    5. Tsai, W.L., et al., Electrochemistry: Building on bubbles in metal electrodeposition. Nature, 2002. 417(6885): p. 139.
    6. Gal‐Or, L., I. Silberman, and R. Chaim, Electrolytic ZrO2 Coatings: I. Electrochemical Aspects. Journal of The Electrochemical Society, 1991. 138(7): p. 1939-1942.
    7. Yoshida, T., et al., Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 1999. 11(10): p. 2657-2667.
    8. Jayashree, R.S. and P.V. Kamath, Nickel hydroxide electrodeposition from nickel nitrate solutions: mechanistic studies. Journal of Power Sources, 2001. 93(1–2): p. 273-278.
    9. Chang, S.T., I.C. Leu, and M.H. Hon Preparation and Characterization of Nanostructured Tin Oxide Films by Electrochemical Deposition. Electrochemical and Solid-State Letters, 2002. 5(8): p. C71-C74.
    10. Karuppuchamy, S., et al., Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002. 151(1-4): p. 19-27.
    11. Hu, C.-C., C.-C. Huang, and K.-H. Chang, A novel solution for cathodic deposition of porous TiO2 films. Electrochemistry Communications, 2009. 11(2): p. 434-437.
    12. Hu, C.-C., H.-C. Hsu, and K.-H. Chang, Cathodic Deposition of TiO2: Effects of H2O2 and Deposition Modes. Journal of The Electrochemical Society, 2012. 159(7): p. D418-D424.
    13. Conway, B.E., Electrochemical Supercapacitors, in Electrochemical Supercapacitors. 1999, Kluwer-Plenum Pub. Co.: New York.
    14. Frackowiak, E. and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001. 39(6): p. 937-950.
    15. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000. 91(1): p. 37-50.
    16. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15–16): p. 2483-2498.
    17. Gutmann, G., Hybrid electric vehicles and electrochemical storage systems — a technology push–pull couple. Journal of Power Sources, 1999. 84(2): p. 275-279.
    18. Shukla, A.K., A.S. Aricò, and V. Antonucci, An appraisal of electric automobile power sources. Renewable and Sustainable Energy Reviews, 2001. 5(2): p. 137-155.
    19. Faggioli, E., et al., Supercapacitors for the energy management of electric vehicles. Journal of Power Sources, 1999. 84(2): p. 261-269.
    20. Appleby, A.J., Fuel cell technology: Status and future prospects. Energy, 1996. 21(7-8): p. 521-653.
    21. Joensen, F. and J.R. Rostrup-Nielsen, Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 2002. 105(2): p. 195-201.
    22. Priestnall, M.A., et al., Compact mixed-reactant fuel cells. Journal of Power Sources, 2002. 106(1–2): p. 21–30.
    23. Dell, R.M., Batteries fifty years of materials development. Solid State Ionics, 2000. 134(1-2): p. 139-158.
    24. Beck, F. and P. Rüetschi, Rechargeable batteries with aqueous electrolytes. Electrochimica Acta, 2000. 45(15-16): p. 2467-2482.
    25. Shukla, A.K., S. Venugopalan, and B. Hariprakash, Nickel-based rechargeable batteries. Journal of Power Sources, 2001. 100(1–2): p. 125-148.
    26. Miller, J.R. and Andrew F. Burke, Electrochemical capacitors : Challenges and opportunities for realworld applications. Electrochemical Society Interface, 2008. 17(1): p. 53–57.
    27. Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270.
    28. Nomoto, S., et al., Advanced capacitors and their application. Journal of Power Sources, 2001. 97–98(0): p. 807-811.
    29. Chae, J.H., K.C. Ng, and G.Z. Chen, Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010. 224(4 ): p. 479-503.
    30. Wang, C.-C. and C.-C. Hu, Electrochemical catalytic modification of activated carbon fabrics by ruthenium chloride for supercapacitors. Carbon, 2005. 43(9): p. 1926-1935.
    31. 胡啟章, 電化學原理與方法. 2011: 五南圖書.
    32. Nian, Y.-R. and H. Teng, Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance. Journal of The Electrochemical Society, 2002. 149(8): p. A1008-A1014.
    33. Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99–107.
    34. Niu, C., et al., High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters, 1997. 70(11): p. 1480-1482.
    35. Chen, W.-C., et al., Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. Journal of Power Sources, 2004. 125(2): p. 292-298
    36. Hu, C.-C., et al., A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. Journal of Power Sources, 2011. 196(2): p. 847-850.
    37. Zheng, J.P., P.J. Cygan, and T.R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Journal of The Electrochemical Society, 1995. 142(8): p. 2699-2703.
    38. Hu, C.-C. and W.-C. Chen, Effects of substrates on the capacitive performance of RuOx•nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochimica Acta, 2004. 49(21): p. 3469-3477.
    39. Long, J.W., et al., Asymmetric electrochemical capacitors-Stretching the limits of aqueous electrolytes. MRS Bulletin, 2011. 36(07): p. 513-522.
    40. Hung, P.-J., et al., Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochimica Acta, 2010. 55 (20): p. 6015-6021.
    41. Chang, K.-H., et al., Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources, 2011. 196(4): p. 2387-2392.
    42. Wu, F.-C., et al., Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources, 2005. 144(1): p. 302–309.
    43. 王振慶, Electrochemical and Textural Characteristics of Activated Carbon Fabrics and (Ru-Sn)Ox.nH2O for supercapacitors. 2005.
    44. McKeown, D.A., et al., Structure of Hydrous Ruthenium Oxides:  Implications for Charge Storage. The Journal of Physical Chemistry B, 1999. 103(23): p. 4825-4832.
    45. Swider, K.E., et al., Synthesis of Ruthenium Dioxide−Titanium Dioxide Aerogels:  Redistribution of Electrical Properties on the Nanoscale. Chemistry of Materials, 1997. 9(5): p. 1248-1255
    46. Dmowski, W., et al., Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering. The Journal of Physical Chemistry B, 2002. 106(49): p. 12677-12683.
    47. Kim, H. and B.N. Popov, Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors
    Journal of The Electrochemical Society, 2003. 150(3): p. D56-D62.
    48. Honig, J.M., Electrodes of Conductive Metallic Oxides, Part A,. 1980, Amsterdam: Elsevier.
    49. Hu, C.-C., W.-C. Chen, and K.-H. Chang How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. Journal of The Electrochemical Society, 2004. 151(2): p. A281-A290.
    50. Hu, C.-C. and C.-Y. Cheng, Anodic deposition of nickel oxides for the nickel-based batteries. Journal of Power Sources, 2002. 111(1): p. 137-144.
    51. Pontie, M., H. Lecture, and F. Bedioui, Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution. Sensors and Actuators B: Chemical, 1999. 56(1–2): p. 1-5.
    52. Hu, C.-C. and C.-Y. Cheng Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition. Electrochemical and Solid-State Letters, 2002. 5 (3): p. A43-A46.
    53. Wen, T.C., C.C. Hu, and Y.J. Li, The Redox Behavior of Electroless Ni/PTFE Deposits in  KOH Journal of The Electrochemical Society, 1993. 140(9): p. 2554-2558.
    54. Bode, H., K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochimica Acta, 1966. 11(8): p. 1079-1087.
    55. Wehrens-Dijksma, M. and P.H.L. Notten, Electrochemical Quartz Microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochimica Acta, 2006. 51(18): p. 3609–3621.
    56. Kamath, P.V., et al., Stabilized α ‐ Ni (  OH  ) 2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 1994. 141(11): p. 2956-2959.
    57. Oliva, P., et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 1982. 8(2): p. 229-255.
    58. Corrigan, D.A. and S.L. Knight, Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. Journal of The Electrochemical Society, 1989. 136(3): p. 613-619.
    59. Barnard, R., C.F. Randell, and F.L. Tye, Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials. Journal of Applied Electrochemistry, 1980. 10(1): p. 109-125.
    60. Bouessay, I., et al., Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon. Electrochimica Acta, 2005. 50(18): p. 3737-3745.
    61. Penin, N., et al., Improved cyclability by tungsten addition in electrochromic NiO thin films. Solar Energy Materials and Solar Cells, 2006. 90(4): p. 422-433.
    62. Lo, Y.L. and B.J. Hwang, In Situ Raman Studies on Cathodically Deposited Nickel Hydroxide Films and Electroless Ni−P Electrodes in 1 M KOH Solution. Langmuir, 1998. 14(4): p. 944-950.
    63. Lo, Y.L. and B.J. Hwang, Characterization of the Electroless Ni ‐ Mo ‐  P  / SnO2 / Ti Electrodes with Heat‐Treatment for Oxygen Evolution in Alkaline Solution. Journal of The Electrochemical Society, 1996. 143(7): p. 2158-2164.
    64. Liu, K.C. and M.A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. Journal of The Electrochemical Society, 1996. 143(1): p. 124-130.
    65. Wang, Y.-g. and Y.-y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochimica Acta, 2006. 51(16): p. 3223-3227.
    66. Zhao, Zhou, and Li, Effects of Deposition Potential and Anneal Temperature on the Hexagonal Nanoporous Nickel Hydroxide Films. Chemistry of Materials, 2007. 19(16): p. 3882–3891.
    67. Zhao, D.-D., et al., Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochemistry Communications, 2007. 9(5): p. 869–874.
    68. Tan, Y., S. Srinivasan, and K.-S. Choi, Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 2005. 127(10): p. 3596-3604.
    69. Hu, C.-C., K.-H. Chang, and T.-Y. Hsu, The Synergistic Influences of OH −  Concentration and Electrolyte Conductivity on the Redox Behavior of Ni ( OH ) 2 / NiOOH. Journal of The Electrochemical Society, 2008. 155(8): p. F196-F200.
    70. Ezhov, B.B. and O.G. Malandin, Structure Modification and Change of Electrochemical Activity of Nickel Hydroxides. Journal of The Electrochemical Society, 1991. 138(4): p. 885-889.
    71. Uñates, M.E., et al., The Influence of Foreign Cations on the Electrochemical Behavior of the Nickel Hydroxide Electrode. Journal of The Electrochemical Society, 1992. 139(10): p. 2697-2704.
    72. Kostecki, R. and F. McLarnon, Electrochemical and In Situ Raman Spectroscopic Characterization of Nickel Hydroxide Electrodes: I. Pure Nickel Hydroxide. Journal of The Electrochemical Society, 1997. 144(2): p. 485-493.
    73. Zhang, Y., et al., Oxygen evolution reaction on Ni hydroxide film electrode containing various content of Co. International Journal of Hydrogen Energy, 1999. 24(6): p. 529-536.
    74. Corrigan, D.A. and R.M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1M KOH Journal of The Electrochemical Society, 1989. 136(3): p. 723-728.
    75. Ding, Y., J. Yuan, and Z. Chang, Cyclic voltammetry response of coprecipitated Ni(OH)2 electrode in 5 M KOH solution. Journal of Power Sources, 1997. 69(1-2): p. 47-54.
    76. Provazi, K., et al., The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001. 102(1–2): p. 224-232.
    77. Trasatti, S., Physical electrochemistry of ceramic oxides. Electrochimica Acta, 1991. 36(2): p. 225-241.
    78. Lee, Y.S., C.C. Hu, and T.C. Wen, Oxygen Evolution on Co‐Cu‐Zn Ternary Spinel Oxide‐Coated Electrodes in Alkaline Solution: Integration of Statistical, Electrochemical, and Textural Approaches. Journal of The Electrochemical Society, 1996. 143(4): p. 1218-1225.
    79. Schumacher, L.C., et al., Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta, 1990. 35(6): p. 975-984.
    80. da Fonseca, C.N.P., M.-A. De Paoli, and A. Gorenstein, The electrochromic effect in cobalt oxide thin films. Advanced Materials, 1991. 3(11): p. 553-555.
    81. Monk, P.M.S. and S. Ayub, Solid-state properties of thin film electrochromic cobalt–nickel oxide. Solid State Ionics, 1997. 99(1–2): p. 115-124.
    82. Larcher, D., et al., The Electrochemical Reduction of Co3 O 4 in a Lithium Cell. Journal of Materials Chemistry, 2002. 149(3): p. A234-A241.
    83. Ceder, G., et al., Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998. 392(6677): p. 694-696.
    84. Hosono, E., et al., Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources, 2006. 158(1): p. 779-783.
    85. Srinivasan, V. and J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of Power Sources, 2002. 108(1–2): p. 15-20.
    86. Kong, L.-B., et al., Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. Journal of Power Sources, 2009. 194(2): p. 1194-1201.
    87. Simon, P. and Y. Gogotsi, Materials for Electrochemical Capacitors. Nat Mater, 2008. 7(11): p. 845-54.
    88. Rolison, D.R., et al., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chemical Society Reviews, 2009. 38(1): p. 226-252.
    89. Wei, T.-Y., et al., Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009. 21(14): p. 3228-3233.
    90. Gao, Y., et al., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010. 195(6): p. 1757-1760.
    91. Yuan, C., et al., Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry, 2011. 21(45): p. 18183-18185.
    92. Wu, J.B., et al., Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochimica Acta, 2011. 56(20): p. 7163-7170.
    93. Hosono, E., et al., Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. Journal of Materials Chemistry, 2005. 15(19): p. 1938-1945.
    94. Xu, J., et al., Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochimica Acta, 2010. 56(2): p. 732-736.
    95. He, T., et al., Co3O4 Nanoboxes: Surfactant-Templated Fabrication and Microstructure Characterization. Advanced Materials, 2006. 18(8): p. 1078-1082.
    96. Spinolo, G., S. Ardizzone, and S. Trasatti, Surface characterization of Co3O4 electrodes prepared by the sol-gel method. Journal of Electroanalytical Chemistry, 1997. 423(1): p. 49-57.
    97. Serebrennikova, I. and V.I. Birss, Electrochemical Behavior of Sol‐Gel Produced Ni and Ni‐Co Oxide Films. Journal of The Electrochemical Society, 1997. 144 (2): p. 566-571.
    98. Lin, C., J.A. Ritter, and B.N. Popov, Characterization of Sol‐Gel‐Derived Cobalt Oxide Xerogels as Electrochemical Capacitors. Journal of The Electrochemical Society, 1998. 145(12): p. 4097-4103.
    99. Nakaoka, K., M. Nakayama, and K. Ogura, Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co2 +  with Glycine. Journal of The Electrochemical Society, 2002. 149(3): p. C159-C163.
    100. Casella, I.G. and M. Gatta, Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry, 2002. 534(1): p. 31–38.
    101. Pauporté, T., et al., Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis. Journal of The Electrochemical Society, 2005. 152(2): p. C49-C53.
    102. Mansour, C., et al., Protective coating for MCFC cathode: Low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine. Journal of Power Sources, 2006. 156(1): p. 23-27.
    103. McGovern, W.R., et al., Formation of Chromate Conversion Coatings on Al‐Cu‐Mg Intermetallic Compounds and Alloys. Journal of The Electrochemical Society, 2000. 147(12): p. 4494-4501.
    104. Barbero, C., G.A. Planes, and M.C. Miras, Redox coupled ion exchange in cobalt oxide films. Electrochemistry Communications, 2001. 3 (3): p. 113-116.
    105. Hu, C.-C. and T.-Y. Hsu, Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides. Electrochimica Acta, 2008. 53(5): p. 2386-2395.
    106. Cao, L., et al., Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage. Chemical Communications, 2004. 0(14): p. 1646-1647.
    107. Lu, Y., et al., Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries. Electrochemistry Communications, 2010. 12(1): p. 101-105.
    108. Nethravathi, C., et al., Ferrimagnetic Nanogranular Co3O4 through Solvothermal Decomposition of Colloidally Dispersed Monolayers of α-Cobalt Hydroxide. The Journal of Physical Chemistry B, 2005. 109(23): p. 11468-11472.
    109. Li, Y., P. Hasin, and Y. Wu, NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution. Advanced Materials, 2010. 22(17): p. 1926-1929.
    110. Li, C.C., et al., Morphogenesis of Highly Uniform CoCO3 Submicrometer Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications. Chemistry of Materials, 2009. 21(20): p. 4984-4992.
    111. Hu, C.-C., et al., Anodic composite deposition of RuO2•xH2O–TiO2 for electrochemical supercapacitors. Electrochemistry Communications, 2009. 11(8): p. 1631-1634.
    112. Hu, C.-C., K.-H. Chang, and C.-C. Wang, Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors. Electrochimica Acta, 2007. 52(13): p. 4411-4418.
    113. Oshitani, M., et al., Development of a Pasted Nickel Electrode with High Active Material Utilization. Journal of The Electrochemical Society, 1989. 136(6): p. 1590-1593.
    114. Chen, J., et al., Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 1999. 146(10): p. 3606-3612.
    115. Jin, H., T. Okamoto, and M. Ishida, Development of a Novel Chemical-Looping Combustion:  Synthesis of a Looping Material with a Double Metal Oxide of CoO−NiO. Energy & Fuels, 1998. 12(6): p. 1272-1277.
    116. Gupta, V., S. Gupta, and N. Miura, Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. Journal of Power Sources, 2008. 175(1): p. 680-685.
    117. Hu, Z.-A., et al., Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors. Electrochimica Acta, 2009. 54(10): p. 2737-2741.
    118. Zhong, J.-H., et al., Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. Journal of Materials Chemistry, 2012. 22(12): p. 5656-5665.
    119. Wang, G., et al., Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. Journal of Power Sources, 2012. 217(0): p. 554-561.
    120. Su, L., L. Gong, and J. Gao, The supercapacitive performances of Co(OH)2/Ni(OH)2 composites in lithium hydroxide solution: Selection of electrolyte and effect of weight ratio. Journal of Power Sources, 2012. 209(0): p. 141-146.
    121. Gaillard, B.B.C., Principles of transmission electron microscopy, 2005: INRA Nantes – Plateform BIBS – Microscopy.
    122. Huang, C.-C., et al., Morphology control of cathodically deposited TiO2 films. Electrochimica Acta, 2010. 55(23): p. 7028-7035.
    123. Wen, T.C. and C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides. Journal of The Electrochemical Society, 1992. 139(8): p. 2158-2163.
    124. Zhou, W.-j., et al., Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. Journal of Materials Chemistry, 2008. 18(8): p. 905-910.
    125. Sasaki, Y. and T. Yamashita, Effect of electrolytic conditions on the deposition of nickel hydroxide. Thin Solid Films, 1998. 334(1-2): p. 117-119.
    126. Faure, C., C. Delmas, and M. Fouassier, Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources, 1991. 35(3): p. 279-290.
    127. Liu, C. and Y. Li, Synthesis and characterization of amorphous α-nickel hydroxide. Journal of Alloys and Compounds, 2009. 478(1–2): p. 415-418.
    128. Hopper, M.A. and J.L. Ord, An Optical Study of the Growth and Oxidation of Nickel Hydroxide Films. Journal of The Electrochemical Society, 1973. 120(2): p. 183-187.
    129. Chen, R.-r., Y. Mo, and D.A. Scherson, In situ Atomic Force Microscopy Imaging of Electroprecipitated Nickel Hydrous Oxide Films in Alkaline Electrolytes. Langmuir, 1994. 10(11): p. 3933-3936.
    130. Brownson, J.R.S. and C. Lévy-Clément, Nanostructured α- and β-cobalt hydroxide thin films. Electrochimica Acta, 2009. 54(26): p. 6637-6644.
    131. Afanasiev, P., Preparation of Mixed Phosphates in Molten Alkali Metal Nitrates. Chemistry of Materials, 1999. 11(8): p. 1999-2007.
    132. Du, Y., K.M. Ok, and D. O'Hare, A kinetic study of the phase conversion of layered cobalt hydroxides. Journal of Materials Chemistry, 2008. 18(37): p. 4450-4459.
    133. Cornilsen, B.C., X. Shan, and P.L. Loyselle, Structural comparison of nickel electrodes and precursor phases. Journal of Power Sources, 1990. 29(3–4): p. 453-466.
    134. Hu, C.-C., et al., Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Letters, 2006. 6(12): p. 2690-2695.
    135. Chen, H., et al., The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 2005. 143(1–2): p. 243-255.
    136. Li, B., et al., Improved performances of [small beta]-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chemical Communications, 2011. 47(11): p. 3159-3161.
    137. Tang, Z., C.-h. Tang, and H. Gong, A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Advanced Functional Materials, 2012. 22(6): p. 1272-1278.
    138. Wang, H., et al., Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 2010. 132(21): p. 7472-7477.
    139. Toghill, K.E., et al., The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors and Actuators B: Chemical, 2010. 147(2): p. 642-652.
    140. Toghill, K.E. and R.G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation International Journal of Electrochemical Science, 2010. 5: p. 1246-1301.
    141. Niklasson, G.A. and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry, 2007. 17(2): p. 127-156.
    142. Inamdar, A.I., et al., Electrochromic and electrochemical properties of amorphous porous nickel hydroxide thin films. Applied Surface Science, 2011. 257(22): p. 9606-9611.
    143. Scherer, M.R.J. and U. Steiner, Efficient Electrochromic Devices Made from 3D Nanotubular Gyroid Networks. Nano Letters, 2012.
    144. Wu, Q., et al., Activity and stability of the Ni(OH)2MnOx/C composite for oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2013. 91(0): p. 314-322.
    145. Ponce, J., et al., Electrochemical study of nickel–aluminium–manganese spinel NixAl1−xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochimica Acta, 2001. 46(22): p. 3373-3380.
    146. Rashkova, V., et al., Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction. Electrochimica Acta, 2002. 47(10): p. 1555-1560.
    147. Bernard, M.C., et al., Characterisation of new nickel hydroxides during the transformation of α Ni(OH)2 to β Ni(OH)2 by ageing. Electrochimica Acta, 1996. 41(1): p. 91-93.
    148. Delahaye-Vidal, A., et al., Structural and textural investigations of the nickel hydroxide electrode. Solid State Ionics, 1996. 84(3–4): p. 239-248.
    149. Watanabe, K.-i. and N. Kumagai, Electrochemical and thermodynamic studies of nickel electrodes in alkaline electrolytes. Journal of Power Sources, 1997. 66(1–2): p. 121-127.
    150. Maruta, J., H. Yasuda, and M. Yamachi, Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells. Journal of Power Sources, 2000. 90(1): p. 89-94.
    151. Kim, M.S., T.S. Hwang, and K.B. Kim, A Study of the Electrochemical Redox Behavior of Electrochemically Precipitated Nickel Hydroxides Using Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society, 1997. 144(5): p. 1537-1543.
    152. Cordoba‐Torresi, S.I., et al., Electrochromic Behavior of Nickel Oxide Electrodes: I . Identification of the Colored State Using Quartz Crystal Microbalance. Journal of The Electrochemical Society, 1991. 138(6): p. 1548-1553.
    153. Kim, M.S. and K.B. Kim, A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society, 1998. 145(2): p. 507-511.
    154. Bernard, P., et al., Ac quartz crystal microbalance applied to the studies of the nickel hydroxide behaviour in alkaline solutions. Electrochimica Acta, 1991. 36(3–4): p. 743-746.
    155. Volkov, A.G., S. Paula, and D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and Bioenergetics, 1997. 42(2): p. 153-160.
    156. Fortes, A.D., et al., Ab initio simulation of ammonia monohydrate (NH[sub 3] [center-dot] H[sub 2]O) and ammonium hydroxide (NH[sub 4]OH). The Journal of Chemical Physics, 2001. 115(15): p. 7006-7014.
    157. Parker, V.B., Thermal Properties of Uni-Univalent Electrolytes, , N.S.R.D. Series, Editor 1965: Natl. Bur. Stand. (U .S .).
    158. Perrin, C.L. and R.K. Gipe, Rotation, solvation, and hydrogen bonding of aqueous ammonium ion. Journal of the American Chemical Society, 1986. 108(5): p. 1088-1089.
    159. Snook, G.A., A.M. Bond, and S. Fletcher, The use of massograms and voltammograms for distinguishing five basic combinations of charge transfer and mass transfer at electrode surfaces. Journal of Electroanalytical Chemistry, 2002. 526(1–2): p. 1-9.
    160. Deabate, S., F. Fourgeot, and F. Henn, X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. Journal of Power Sources, 2000. 87(1–2): p. 125-136.
    161. Xia, X.H., et al., Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 2008. 92(6): p. 628-633.
    162. Ushio, Y., A. Ishikawa, and T. Niwa, Degradation of the electrochromic nickel oxide film upon redox cycling. Thin Solid Films, 1996. 280(1–2): p. 233-237.
    163. Liang, Y., et al., Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012. 134(38): p. 15849-15857.
    164. Liu, Z.X., et al., Oxygen reduction reaction via the 4-electron transfer pathway on transition metal hydroxides. Journal of Power Sources, 2011. 196(11): p. 4972-4979.
    165. Kong, D.-S., et al., Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance. Journal of Alloys and Compounds, 2011. 509(18): p. 5611-5616.
    166. Huang, J., et al., Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochimica Acta, 2012. 75(0): p. 273-278.
    167. Liang, Y.-Y., S.-J. Bao, and H.-L. Li, Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. Journal of Solid State Electrochemistry, 2007. 11(5): p. 571-576.
    168. Kim, J.G., et al., Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy. Applied Surface Science, 2000. 165(1): p. 70-84.
    169. Verma, S., et al., Nearly Monodispersed Multifunctional NiCo2O4 Spinel Nanoparticles: Magnetism, Infrared Transparency, and Radiofrequency Absorption. The Journal of Physical Chemistry C, 2008. 112(39): p. 15106-15112.
    170. Radisic, A., et al., Quantifying Electrochemical Nucleation and Growth of Nanoscale Clusters Using Real-Time Kinetic Data. Nano Letters, 2006. 6(2): p. 238-242.
    171. Hu, C.-C., J.-C. Chen, and K.-H. Chang, Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. Journal of Power Sources, 2013. 221(0): p. 128-133.
    172. Eliaz, N. and M. Eliyahu, Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. Journal of Biomedical Materials Research Part A, 2007. 80A(3): p. 621-634.
    173. Srinivasan, V., J.W. Weidner, and R.E. White, Mathematical models of the nickel hydroxide active material. Journal of Solid State Electrochemistry, 2000. 4(7): p. 367-382.
    174. Schwenzer, B., et al., Nanostructured p-type cobalt layered double hydroxide/n-type polymer bulk heterojunction yields an inexpensive photovoltaic cell. Thin Solid Films, 2009. 517(19): p. 5722-5727.
    175. Zhu, W.-H., et al., A study of the electrochemistry of nickel hydroxide electrodes with various additives. Journal of Power Sources, 1995. 56(1): p. 75-79.
    176. Liu, X.-M., et al., Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors. Electrochimica Acta, 2004. 49(19): p. 3137-3141.
    177. Nethravathi, C., et al., Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behaviour. Journal of Power Sources, 2007. 172(2): p. 970-974.
    178. Xu, Z.P. and H.C. Zeng, Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. Chemistry of Materials, 1998. 11(1): p. 67-74.
    179. Rahbani, J., et al., Kinetics and mechanism of ionic intercalation/de-intercalation during the formation of [small alpha]-cobalt hydroxide and its polymorphic transition to [small beta]-cobalt hydroxide: reaction-diffusion framework. Journal of Materials Chemistry, 2012. 22(32): p. 16361-16369.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE