簡易檢索 / 詳目顯示

研究生: 劉紅櫻
LIU HUNG YING
論文名稱: 半線性橢圓方程解路徑之探討
Multiple solution paths of semilinear elliptic equations
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2003
畢業學年度: 92
語文別: 中文
論文頁數: 81
中文關鍵詞: 分歧點轉彎點正則點中央有限差商法牛頓迭代法虛擬弧長延拓法
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討如何將半線性橢圓方程離散,利用數值分析的方法,求得數學模型的分歧點、轉彎點與正則點,並延拓出其解路徑,以探討模型的多重解的存在,有助於我們了解半線性橢圓方程在定性上的變化。本文中,我們應用了隱函數定理,並使用虛擬弧長延拓法、中央有限差商法、割線猜測法和牛頓迭代法等數值方法。


    In this thesis, we use numerical methods to investigate the multiple solution paths of semilinear elliptic equations. Moreover, we research a mathematical model to find solution paths containing bifurcation points, turning points and regular points of semilinear elliptic equation. It will be helpful to understand the qualitative properties in semilinear elliptic equations. In this paper, we apply implicit function theorem. At the same time, we use numerical methods which including, pseudo–arclength continuation method, central difference method, secant predictor method and Newton’s iterative method.

    第一章 緒論                    1 第二章 分歧理論與虛擬弧長延拓法          3 2.1 分歧問題 ……………………………………………………  3 2.2 隱函數定理與分歧理論 ……………………………………  5 2.3 虛擬弧長延拓法 ……………………………………………  6 第三章 半線性橢圓方程的數值解法          9 3.1 中央有限差商法 ……………………………………………  9 3.2 牛頓迭代法 ………………………………………………… 12 3.3 虛擬弧長延拓法之數值計算 ……………………………… 13 第四章 半線性橢圓方程的數值實驗          20 4.1 模型離散與延拓解路徑演算法 …………………………… 20 4.2 p 值實驗結果 ……………………………………………… 26 4.3 c 值實驗結果 ……………………………………………… 34 4.4 q 值實驗結果 ……………………………………………… 45 第五章 結論                    77 參考文獻                      79

    [1] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, 1265-1281 (1986).
    [2] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), 584-599 (1977).
    [3] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5,475-486 (1981).
    [4] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36,1-25 (1980).
    [5] Choi, Y. S., Jen, K. C. (簡國清), and Mckenna, P. J., The Structure of Solution Set for Periodic Oscillation in a Suspension Bridge Model, IMA J. Appl. Math., 47,283-306 (1991).
    [6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8,321-340 (1971).
    [7] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis,
    52, 161-180 (1973),
    [8] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation,
    Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979).
    [9] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, 1-35, (1977).
    [10] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, 267-269, (1984).
    [11] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, (1989).
    [12] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, (1987).
    [13] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, 83-108, (1972).
    [14] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, (1977).
    [15] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
    [16] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, (1984).
    [17] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. (1983).
    [18] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24,441-467 (1983).
    [19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, (1980).
    [20] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
    [21] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, 374-387 (1985),
    [22] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, 223-230 (1983).
    [23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, (1978),
    [24] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, 1475-1485 (1994).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE