在本論文中,我們探討如何將半線性橢圓方程離散,利用數值分析的方法,求得數學模型的分歧點、轉彎點與正則點,並延拓出其解路徑,以探討模型的多重解的存在,有助於我們了解半線性橢圓方程在定性上的變化。本文中,我們應用了隱函數定理,並使用虛擬弧長延拓法、中央有限差商法、割線猜測法和牛頓迭代法等數值方法。
In this thesis, we use numerical methods to investigate the multiple solution paths of semilinear elliptic equations. Moreover, we research a mathematical model to find solution paths containing bifurcation points, turning points and regular points of semilinear elliptic equation. It will be helpful to understand the qualitative properties in semilinear elliptic equations. In this paper, we apply implicit function theorem. At the same time, we use numerical methods which including, pseudo–arclength continuation method, central difference method, secant predictor method and Newton’s iterative method.
[1] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, 1265-1281 (1986).
[2] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), 584-599 (1977).
[3] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5,475-486 (1981).
[4] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36,1-25 (1980).
[5] Choi, Y. S., Jen, K. C. (簡國清), and Mckenna, P. J., The Structure of Solution Set for Periodic Oscillation in a Suspension Bridge Model, IMA J. Appl. Math., 47,283-306 (1991).
[6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8,321-340 (1971).
[7] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis,
52, 161-180 (1973),
[8] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation,
Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979).
[9] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, 1-35, (1977).
[10] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, 267-269, (1984).
[11] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, (1989).
[12] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, (1987).
[13] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, 83-108, (1972).
[14] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, (1977).
[15] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
[16] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, (1984).
[17] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. (1983).
[18] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24,441-467 (1983).
[19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, (1980).
[20] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
[21] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, 374-387 (1985),
[22] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, 223-230 (1983).
[23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, (1978),
[24] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, 1475-1485 (1994).