簡易檢索 / 詳目顯示

研究生: 林采吟
Lin Tsai-Yin
論文名稱: 水相系統中過氧化氫的活化與量測
Activation and Measurement of Hydrogen Peroxide in Aquatic Solutions
指導教授: 吳劍侯
Wu Chien-Hou
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 178
中文關鍵詞: 過氧化氫過氧化酵素銅離子溶膠凝膠技術矽材抗氧化劑
外文關鍵詞: peroxide, copper ions, sol-gel, antioxidant, HRP, silica gel
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    過渡金屬有機錯合物對於過氧化氫的催化特性廣泛稱之為Fenton/Fenton-like反應。在一百餘年的研究發展下,此反應已被廣泛應用於不同的工程領域,例如:IC產業的化學機械拋光(CMP;chemical mechanical polishing),傳統化工產業的聚合物合成(polymerization synthesis)及環境工程領域中的污水高級氧化處理(AOP;advanced oxidation process)。工程科學以外,金屬錯合物活化含氧化物所產生的含氧自由基(OH radicals)及活性氧化物種(reactive oxygen species),在生化反應系統中扮演相當重要的角色,以含過渡金屬之氧化還原酵素(redox metalloenzyme)為例,其在致癌與老化等疾病產生的機轉中,是不可忽略的重要反應因子,因此長年以來,相當多的基礎科學研究團隊亦著力於探討活化系統的反應途徑與機制,試圖進而釐清相關生理現象的引發機轉。而隨著材料科學與系統微小化技術的發展,很多研究也善用不同氧化還原酵素與氧分子或是過氧化物的反應特性,進一步發展不同功能之生物感測器(biosensor)。本論文以探討過氧化氫的活化及利用機制(utilization pathway)為出發點,將研究內容分為二,第一部份著重於探討過氧化氫的活化反應動力學與反應途徑;研究內容以胺基酸作為二價銅離子螯合劑(chelator)探討對於過氧化氫活化效率的影響。此外,本研究亦探討添加物,如:鹽類,離子強度,自由基去除劑(radical scavengers),抗氧化劑(antioxidants)等物種對於系統活化效率所產生的效應。第二部分以過氧化氫的量測為酵素活性之指標反應,進以研究最佳化的過氧化酵素固化方式及其應用;研究方法為利用溶膠-凝膠技術(sol-gel technique)將酵素(以含過渡金屬之氧化還原酵素, horse radish peroxidase為例)包埋固化於具高度生物相容性的矽材中,並同步(one-step technique)以有機修飾劑(sugarsilane及PEG polymer)進行材料結構與生物相容性的修飾;矽材合成後,首先量測矽材所包埋之酵素的活性,進而評估影響酵素活性的材料特性,如:孔隙度,結構性,靜電效應與其他分子間作用力(化學性)等。未來在材料的應用層面上,則是利用最適化基材發展光度式酵素催化感測器(optical enzyme catalytic sensor)及毛細管柱型之酵素反應器(capillary biocatalytic reactor),最終冀望該系統可應用於抗氧化劑活性的量測。


    ABSTRACT

    Activation of hydrogen peroxide using transition metal ions/complexes is so-called Fenton/Fenton-like reaction since 1876. The utilization of hydrogen peroxide catalyzed by transition metal-complexes or natural redox metalloenzyme has been widely applied in different disciplines, such as: chemical mechanical polishing (CMP) process in integrated circuit (IC) industry, polymerization synthesis in traditional industries, and the treatment of wastewater in the environmental concerns (which is called “advanced oxidation process”). The activation process was proposed to transform hydrogen peroxide into hydroxyl radicals or other active species called reactive oxygen species (ROS). Besides engineering science, Fenton/Fenton-like reactions play a very important role in the mechanism of aging and disease induction for its capacity to destroy DNA, peptide in tissue/organs. Based on the objectives of investigation on hydrogen peroxide activation, reaction pathways and its utilization, we have divided our study into two parts: the first part is to focus on investigating the catalytic efficiency of different copper(II)- amino acid complexes on peroxide activation and its possible reacting pathways; then, we make efforts to discuss the inferences of system additives, including salts, buffer, radicals, and antioxidants. We chose amino acids, the essential unit to compose natural matters, as the target chelating compounds. The main goal is to see if hydroxyl radical really dominate the reaction mechanism as that of traditional Fenton reaction. The second part is to immobilize one of redox metalloenzymes, horse radish peroxidase, into silica gel using one-step sol-gel technique and then to test its function towards the development of optical catalytic enzymatic reactor or flow-through reactor. Different silica precursors and silica surface modifiers are tested for obtain optimized composition to fabricate mesoporous/ macroporous materials. Meanwhile the biocom- patibility was compared among different fabricated silica gels using HRP activity performance as the indicator. After all, more efforts are expected to develop an economical, on line-LC or on-line CE ROS and antioixdant sensing system, which complete quantification and quantitation analysis concurrently.

    CONTENT OVERVIEW Chapter 1 Overview Chapter 2 Peroxide Activation using Copper-Induced Fenton-Like Catalysis Chapter 3 Effects of Matrix and Ligand on the Activation of Hydrogen Peroxide with Copper(II)-Amino Acid Complexes Chapter 4 Characteristics of Peroxidase-Entrapped Silica Modified with Covalently Bound Sugars for Enhancing Biocompatibility Chapter 5 Controlling Structural Characteristics and Biological Activity of Peroxidase- Entrapped Bio- glasses via PEG Polymer Doping Chapter 6 Future Outlook: Measurement of Peroxide and Antioxidant Activity Using HRP-Entrapped Sensor and Monolithic Silica Capillary Column combined with UV Detection CONTENTS Abstract (Chinese) I Abstract (English) II Content Overview III Chapter 1 Overview 001 Chapter 2 Peroxide Activation Using Copper-Induced Fenton-Like Catalysis 006 2.1 Introduction and Research Goal 006 2.2 Background 007 2.2.1 Fenton reaction/ Fenton-like reaction 007 2.2.2 The nature of copper ions and copper complexes 008 2.2.3 Peroxide-activation pathway and its application in engineering 009 2.3 Experimental 012 2.3.1 Reagents 012 2.3.2 Instruments 012 2.3.3 Procedures 013 2.4 Results and Discussion 015 2.4.1 Kinetics of substrate oxidation 015 2.4.2 pH effect 023 2.4.3 Effect of [copper: amino acid] molar ratio 026 2.4.4 Analysis of copper-complex activity vs. copper speciation 029 2.4.5 Side-chain effect on the copper-complex activity 031 2.5 Conclusions and Future Outlook 032 2.6 References 035 Chapter 3 Effects of Matrix and Ligand on the Activation of Hydrogen Peroxide with Copper(II)-Amino Acid Complexes 041 3.1 Introduction and Research Goal 041 3.2 Background 042 3.2.1 The importance of copper in radical-generating system 042 3.2.2 The role of amino-acid chelator on the activity of copper(II) complexes 043 3.2.3 The role of antioxidant on the activity of copper(II) complexes 046 3.2.4 The investigation of reactionpathways on Cu(II)/organic acid/H2O2 system 047 3.3 Experimental 048 3.3.1 Reagents 048 3.3.2 Instruments 048 3.3.3 Preparation and procedures for kinetic study 049 3.4 Results and Discussion 051 3.4.1 Effects of buffer concentration and ion strength 051 3.4.2 Effect of electrolytes and their concentrations 055 3.4.3 Effect of amino acid chelators 059 3.4.4 Competitive reaction between antioxidants and dyes 061 3.5 Conclusions and Future Outlook 066 3.6 References 068 Chapter 4 Characteristics of Peroxidase-Entrapped Silica Modified with Covalently Bound Sugar for enhancing Biocompatibility 073 4.1 Introduction and Research Goal 073 4.2 Background 074 4.2.1 Characteristics and function of HRP 074 4.2.2 Development and characteristics of silica matrix using sol-gel technique 076 4.2.3 Immobilization of enzymes in silica matrix using one-step sol-gel technique 078 4.2.4 Developed methods using HRP as the catalytic medium 081 4.3 Experimental 083 4.3.1 Materials and reagents 083 4.3.2 Preparation of DGS 083 4.3.3 Preparation and procedures 083 4.3.4 HRP activity assay 084 4.4 Results and Discussion 085 4.4.1 Interference of additives for HRP activity assay in solution 085 4.4.2 Kinetics of HRP activity assay in solution 088 4.4.3 Effect of immobilization on catalytic activity of encapsulated HRP 091 4.4.4 Effect of aging condition on encapsulated HRP performance 093 4.4.5 Optimization of composition of silica monoliths 096 4.4.6 Sugar-modification on biocompatibility of silica (DGS vs. SS) 099 4.4.7 Effect of timing of GLS addition 104 4.5 Conclusions and Future Outlook 110 4.6 References 111 Chapter 5 Controlling Structural characteristics and Biological Activity of Peroxidase-Entrapped Bio-Glasses via PEG-Polymer Doping 118 5.1 Introduction and Research Goal 118 5.2 Background 119 5.2.1 Functions of PEG organic modifiers on enzyme activity 119 5.2.2 Function of organic modifiers on silica morphology 120 5.2.3 Application of PEG polymer-modified silica medium 121 5.2.4 PEG-modified medium as biocompatible materials 122 5.3 Experimental 124 5.3.1 Reagents 124 5.3.2 Experimental 124 5.3.3 Characteristics evaluation of silica morphology 124 5.4 Results and Discussion 126 5.4.1 Morphology investigation on PEG polymer-doped silica 126 5.4.2 Effect of PEG additives on leaching of HRP from silica gels 132 5.4.3 Encapsulated HRP activity in different silica monoliths 134 5.5 Conclusions and Future Outlook 137 5.6 References 138 Chapter 6 Future Outlook: Measurement of Peroxide Using HRP-Entrapped Silica Medium and Monolithic Silica Capillary Column Combined with UV Detection 143 6.1 Introduction and Research Goal 143 6.2 Background 144 6.2.1 Silica-derived monolith as bioreactor and liquid chromatography column 144 6.2.2 Applications of HRP-encapsulated silica matrix in chemical assay 145 6.2.2 Functions of radical scavengers/antioxidants and its measurement 146 6.3 Experimental 149 6.3.1 Reagents and Instruments 149 6.3.2 Procedures for column making 149 6.3.3 Analytical procedures 151 6.4 Results and Discussion 153 6.4.1 Kinetic parameters of entrapped HRP in different silica materials prepared in 96-well microtiter plates 153 6.4.2 Measurement of peroxide using array-type optical sensor 193 6.4.3 Effect of electrostatics on the entrapping efficiency and stability of HRP 159 6.4.4 Stability and reusability of synthesized HRP reactor 163 6.4.5 Stability of ABTS radicals formed in the flow-through HRP reactor 165 6.5 Conclusions and Future Outlook 170 6.6 References 172

    Augusti, R., Dias, A. O., Rocha, L. L., Lago, R. M., 1998. kinetics and mechanism of bezene derivative degradation with Fenton’s reagent in aqueous medium studied by MIMS. J. Phys. Chem. A 102, 10723-10727.
    Funahashi, S., Funada, S., Inoma, M., Kurita, R., Tanaka, M., 1982. Reactions of hydrogen peroxide with metal complexes. 6. Kinetic studies of the reactions of hydrogen peroxide with aqua(nitrilotriacetato)oxovanadate(IV) and diaquaoxo(2,6-pyridinedicarboxylato)vanadium(IV) in acidic aqueous solution. Inorg. Chem. 21, 2202-2205.
    Hanaoka, S., Lin, J. M., Yamada, M., 2000. Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(II)-amino acids complexes and its application to the determination of tryptophan and phenylalanine. Anal. Chim. Acta 409, 65-73.
    Huwiler, M., Jenzer, H., Kohler, H., 1986. The role of compound-III in reversible and irreversible inactivation of lactoperoxidase. Eur. J. Biochem. 158, 609-614.
    Liu, M., Li, B., Zhang, Z., Lin, J.-M., 2005. Enhancing effect of DNA on chemiluminescence from decomposition of hydrogen peroxide catalyzed by copper(II). Anal. Bioanal. Chem. 381, 828-832.
    Mottola, H. A., Perez-Bendito, D., 1996. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem. 68, R257-R290.
    Robbins, M. H., Drago, R. S., 1997. Activation of hydrogen peroxide for oxidation by copper(II) complexes. J. catal. 170, 295-303.
    Rosatto, S. S., de Oliveira Neto, G., Kubota, T., 2001. Effect of DNA on the peroxdase based biosensor for phenol determination in waste waters. Electroanalysis 13, 445-450.
    Santos, A. S., Durán, N., Kubota, L. T., 2005. Biosensor for H2O2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide. Electroanalysis 17, 1103-1111.
    Sanz, V., de marcos, S., Castillo, J. R., Galbán, J., 2005. Application of molecular absorption propersities of horoseradish peroxidase for self-indicating enzymatic interactions and analytical methods. J. Am. Chem. Soc. 127, 1038-1048.
    Timofeevski, S. L., Reading, N. S., Aust, S. D., 1998. Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Arch. Biochem. Biophys. 356, 287-295.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE