研究生: |
林采吟 Lin Tsai-Yin |
---|---|
論文名稱: |
水相系統中過氧化氫的活化與量測 Activation and Measurement of Hydrogen Peroxide in Aquatic Solutions |
指導教授: |
吳劍侯
Wu Chien-Hou |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 178 |
中文關鍵詞: | 過氧化氫 、過氧化酵素 、銅離子 、溶膠凝膠技術 、矽材 、抗氧化劑 |
外文關鍵詞: | peroxide, copper ions, sol-gel, antioxidant, HRP, silica gel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
過渡金屬有機錯合物對於過氧化氫的催化特性廣泛稱之為Fenton/Fenton-like反應。在一百餘年的研究發展下,此反應已被廣泛應用於不同的工程領域,例如:IC產業的化學機械拋光(CMP;chemical mechanical polishing),傳統化工產業的聚合物合成(polymerization synthesis)及環境工程領域中的污水高級氧化處理(AOP;advanced oxidation process)。工程科學以外,金屬錯合物活化含氧化物所產生的含氧自由基(OH radicals)及活性氧化物種(reactive oxygen species),在生化反應系統中扮演相當重要的角色,以含過渡金屬之氧化還原酵素(redox metalloenzyme)為例,其在致癌與老化等疾病產生的機轉中,是不可忽略的重要反應因子,因此長年以來,相當多的基礎科學研究團隊亦著力於探討活化系統的反應途徑與機制,試圖進而釐清相關生理現象的引發機轉。而隨著材料科學與系統微小化技術的發展,很多研究也善用不同氧化還原酵素與氧分子或是過氧化物的反應特性,進一步發展不同功能之生物感測器(biosensor)。本論文以探討過氧化氫的活化及利用機制(utilization pathway)為出發點,將研究內容分為二,第一部份著重於探討過氧化氫的活化反應動力學與反應途徑;研究內容以胺基酸作為二價銅離子螯合劑(chelator)探討對於過氧化氫活化效率的影響。此外,本研究亦探討添加物,如:鹽類,離子強度,自由基去除劑(radical scavengers),抗氧化劑(antioxidants)等物種對於系統活化效率所產生的效應。第二部分以過氧化氫的量測為酵素活性之指標反應,進以研究最佳化的過氧化酵素固化方式及其應用;研究方法為利用溶膠-凝膠技術(sol-gel technique)將酵素(以含過渡金屬之氧化還原酵素, horse radish peroxidase為例)包埋固化於具高度生物相容性的矽材中,並同步(one-step technique)以有機修飾劑(sugarsilane及PEG polymer)進行材料結構與生物相容性的修飾;矽材合成後,首先量測矽材所包埋之酵素的活性,進而評估影響酵素活性的材料特性,如:孔隙度,結構性,靜電效應與其他分子間作用力(化學性)等。未來在材料的應用層面上,則是利用最適化基材發展光度式酵素催化感測器(optical enzyme catalytic sensor)及毛細管柱型之酵素反應器(capillary biocatalytic reactor),最終冀望該系統可應用於抗氧化劑活性的量測。
ABSTRACT
Activation of hydrogen peroxide using transition metal ions/complexes is so-called Fenton/Fenton-like reaction since 1876. The utilization of hydrogen peroxide catalyzed by transition metal-complexes or natural redox metalloenzyme has been widely applied in different disciplines, such as: chemical mechanical polishing (CMP) process in integrated circuit (IC) industry, polymerization synthesis in traditional industries, and the treatment of wastewater in the environmental concerns (which is called “advanced oxidation process”). The activation process was proposed to transform hydrogen peroxide into hydroxyl radicals or other active species called reactive oxygen species (ROS). Besides engineering science, Fenton/Fenton-like reactions play a very important role in the mechanism of aging and disease induction for its capacity to destroy DNA, peptide in tissue/organs. Based on the objectives of investigation on hydrogen peroxide activation, reaction pathways and its utilization, we have divided our study into two parts: the first part is to focus on investigating the catalytic efficiency of different copper(II)- amino acid complexes on peroxide activation and its possible reacting pathways; then, we make efforts to discuss the inferences of system additives, including salts, buffer, radicals, and antioxidants. We chose amino acids, the essential unit to compose natural matters, as the target chelating compounds. The main goal is to see if hydroxyl radical really dominate the reaction mechanism as that of traditional Fenton reaction. The second part is to immobilize one of redox metalloenzymes, horse radish peroxidase, into silica gel using one-step sol-gel technique and then to test its function towards the development of optical catalytic enzymatic reactor or flow-through reactor. Different silica precursors and silica surface modifiers are tested for obtain optimized composition to fabricate mesoporous/ macroporous materials. Meanwhile the biocom- patibility was compared among different fabricated silica gels using HRP activity performance as the indicator. After all, more efforts are expected to develop an economical, on line-LC or on-line CE ROS and antioixdant sensing system, which complete quantification and quantitation analysis concurrently.
Augusti, R., Dias, A. O., Rocha, L. L., Lago, R. M., 1998. kinetics and mechanism of bezene derivative degradation with Fenton’s reagent in aqueous medium studied by MIMS. J. Phys. Chem. A 102, 10723-10727.
Funahashi, S., Funada, S., Inoma, M., Kurita, R., Tanaka, M., 1982. Reactions of hydrogen peroxide with metal complexes. 6. Kinetic studies of the reactions of hydrogen peroxide with aqua(nitrilotriacetato)oxovanadate(IV) and diaquaoxo(2,6-pyridinedicarboxylato)vanadium(IV) in acidic aqueous solution. Inorg. Chem. 21, 2202-2205.
Hanaoka, S., Lin, J. M., Yamada, M., 2000. Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(II)-amino acids complexes and its application to the determination of tryptophan and phenylalanine. Anal. Chim. Acta 409, 65-73.
Huwiler, M., Jenzer, H., Kohler, H., 1986. The role of compound-III in reversible and irreversible inactivation of lactoperoxidase. Eur. J. Biochem. 158, 609-614.
Liu, M., Li, B., Zhang, Z., Lin, J.-M., 2005. Enhancing effect of DNA on chemiluminescence from decomposition of hydrogen peroxide catalyzed by copper(II). Anal. Bioanal. Chem. 381, 828-832.
Mottola, H. A., Perez-Bendito, D., 1996. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem. 68, R257-R290.
Robbins, M. H., Drago, R. S., 1997. Activation of hydrogen peroxide for oxidation by copper(II) complexes. J. catal. 170, 295-303.
Rosatto, S. S., de Oliveira Neto, G., Kubota, T., 2001. Effect of DNA on the peroxdase based biosensor for phenol determination in waste waters. Electroanalysis 13, 445-450.
Santos, A. S., Durán, N., Kubota, L. T., 2005. Biosensor for H2O2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide. Electroanalysis 17, 1103-1111.
Sanz, V., de marcos, S., Castillo, J. R., Galbán, J., 2005. Application of molecular absorption propersities of horoseradish peroxidase for self-indicating enzymatic interactions and analytical methods. J. Am. Chem. Soc. 127, 1038-1048.
Timofeevski, S. L., Reading, N. S., Aust, S. D., 1998. Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Arch. Biochem. Biophys. 356, 287-295.