研究生: |
王孟仁 Wang, Meng-Jen |
---|---|
論文名稱: |
高溫氣冷式研究用反應器HTR-10之爐心特性分析與計算 Neutronics calculations and characteristic study of the HTR-10 high temperature gas-cooled reactor core |
指導教授: |
梁正宏
Liang, Jenq-Horng 裴晉哲 Peir, Jinn-Jer |
口試委員: |
薛燕婉
胡中興 陳健湘 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 高溫氣冷球床式反應器 、過緩速 、均質化 、中子能譜 、燃耗 |
外文關鍵詞: | HTR-10, pebble bed, over-moderation, homogenize, spectrum, burnup |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所探討之研究用核子反應器為北京清華大學於1992年著手設計、2000年完工,並於該年年底達成第一次臨界之10MW測試用高溫氣冷式反應器 ( 10MW High-Temperature-Gas-Cooled Test Reactor,簡稱HTR-10 ),使用的模擬程式為MCNP5 v1.51與SCALE6。本研究首先根據IAEA第1382號技術報告中的四個驗證計算( Benchmark )問題進行重複並延伸的計算,經過比較,本論文的計算結果與各國的計算結果相當相近。
本論文亦使用MCNP5改變HTR-10的燃料設計並探討其變化與原因,結果顯示,HTR-10為一過緩速( over-moderation )設計的核子反應器,若改變其燃料設計為緩速不足( under-moderation ),則反應器的中子能譜會變成快中子能譜。
基於HTR-10雙重的非均質( Double Heterogeneity )特性,會使得在模擬計算上非常的麻煩以及耗費時間,故本文亦針對爐心均質化計算( Homogenization Calculation )對於中子特性的影響進行探討,模擬的模型共分為五個:(1)未做任何均質化 (2)把TRISO粒子均質化,包括其所有包覆層 (3)把燃料球直徑5公分之燃料區均質化,但保留0.5公分的石墨殼層 (4)把6公分的燃料球全部均質化,包括0.5公分的石墨殼層 (5)把整個爐心均質化。其中後四者為均質化模型。由結果可知,三個不同程度的均質化模型所計算出來的k值與未均質化的模型相比,其差異均在3%以下,且中子能譜與平均能量相近。
此外,本研究使用SCALE6平台中的TRITON序列對HTR-10進行燃耗計算。計算結果顯示,若不考慮燃耗限值與流動,則非均質化的HTR-10爐心可以燃耗約8.62年不更換燃料。
This study performed an investigation of neutronics simulation and analysis of core characteristic on HTR-10. HTR-10 is a pebble bed High Temperature Gas Cooled Reactor, so called HTGCR. The HTR-10 was built by China and completed the first experiment of criticality in 2000. The following simulations are based on the IAEA-1382 technical report released in 2003. All the benchmark problems in this report are repeated and the results of our simulations are similar to the literature’s results.
By changing the fuel design of HTR-10, it can be figured out that HTR-10 was designed as an “over-moderation” type reactor. The neutron spectrum can become hotter when the fuel design was changed into “under-moderation”.
Five homogenized models are also performed to investigate the model simplification effect on the double heterogeneity of HTR-10 core in this study. They are: (1) heterogeneous model (2) homogenized TRISO particles (3) homogenized fuel zone of fuel ball (4) homogenized fuel ball (5) homogenized whole core, respectively. The results revealed that the multiplication factor decreased as more regions are homogenized. And the largest difference of multiplication factor between each model is roughly 3%. The neutron spectra of each model are similar comparing with each others.
Burnup calculation using TRITON sequence of SCALE6 is also performed in this study. Apart from the limitation of burnup and online-refueling, the operation period of HTR-10 is roughly 8.62 years without changing fuel.
[1] GenIV International Forum 2007 Annual Report, GenIV International Forum (2007).
[2] Rainer Moormann, A Safety Re-evaluation of the AVR Pebble Bed Reactor Operation and its Consequences for Future HTR Concepts, Berichte des Forschungszentrums Jülich, ISSN 0944-2952.
[3] http://www.thtr.de/index.htm.
[4] Kunitomi, K., Sun, Y., Ball, S., Brey, H.L., and Methnani, M., Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10,” International Atomic Energy Agency,IAEA-TEDOC-1382 (2007).
[5] Tom Ferreira, PBMR: Clean, Safe, and Affordable Energy, Enviromental Impact Report (2007).
[6] Zuiyi Zhang, Zongxin Wu, Yuanhui Xu, Yuliang Sun, Fu Li, Design of Chinese Modular High-Temperature Gas-Cooled Reactor。HTR-PM, 2nd International Topical Meeting on High Temperature Reactor Technology, Beijing, China (2004).
[7] 吳宗鑫, 我國高溫氣冷堆的發展, 北京清華大學核能技術研究院, 中國大陸核動力工程期刊 第21卷 第1期 (2000)。
[8] Lebenhaft, J.R., MCNP4B Modeling of Pebble Bed Reactors, MS Thesis, Department of Nuclear Engineering, University of Massachusetts Institute of Technology, Cambridge, MA., U.S.A.(2002).
[9] Eva E. Sunny, Germina Ilas, Scale6 Analysis of HTR-10 Pebble-Bed Reactor for Initial Critical Configuration, PHYSOR2010-Advance in Reactor Physics to Power the Nuclear Renaissance (2010).
[10] William K. Terry, Soon Sam Kim, Leland M. Montierth, Joshua J. Cogliati, Evaluation of HTR-10 Reactor as a Benchmark for Physics Code QA, PHYSOR-2006, ANS Topical Meeting on Reactor Physics (2006).
[11] V. Şeker, Ǖ Çolak, HTR-10 Full Core First Criticality Analysis with MCNP, Nuclear Engineering and Design, 222, pp 263–270 (2003).
[12] S. M. Bowman, SCALE Program Manager, KEBO-VI Primer: APrimer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz, ORNL/TM-2008/069, Oak Ridge National Labotory (2008).
[13] S. Goluoglu, D.F. Hollenbach, L.M. Petrie, CSAS6: Control Module for Enhanced Criticality Safety Analysis with KENO-VI,ORNL/TM-2005/39 Version6, Vol. I, Sect. C6, Oak Ridge National Labotory (2009).
[14] N.M. Greene, BONAMI: Resonance Self-Shielding by the BONDARENKO Method, ORNL/TM-2005/39 Version6, Vol. II, Sect. F1, Oak Ridge National Labotory (2009).
[15] N.M. Greene, L.M. Petrie, R.M. Westfall, NITWAL: SCALE Sysytem module for Performing Resonance Shielding and Working Library Production, ORNL/TM-2005/39 Version6, Vol. II, Sect. F2, Oak Ridge National Labotory (2009).
[16] S. Goluiglu, D.F. Hollenbach, L.M. Petrie, WORKER: SCALE Sysytem module for Creating and Modifying Working Format Libraries, ORNL/TM-2005/39 Version6, Vol. II, Sect. F20, Oak Ridge National Labotory (2009).
[17] M.L. Williams, M. Asgari, D.F. Hollenbach, CENTRM: A One Dimensional Neutron Transport Code for Computing Pointwise Energy Spectra, ORNL/TM-2005/39 Version6, Vol. II, Sect. F18, Oak Ridge National Labotory (2009).
[18] M.L. Williams, D.F. Hollenbach, PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM, ORNL/TM-2005/39 Version6, Vol. II, Sect. F19, Oak Ridge National Labotory (2009).
[19] D.F. Hollenbach, M.L. Williams, S. Goluiglu, N.F. Landers, M.E. Dunn, KENO-VI: A General Quadratic Version of the KENO Program, ORNL/TM-2005/39 Version6, Vol. II, Sect. F17, Oak Ridge National Labotory (2009).
[20] X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview and Theory, Los Alamas National Laboraty (2003).
[21] D.J. Cumberland and .J. Crawford, "The Packing of Particles", Hand book of Powder Technology, Volume6, Elsevier (1987).
[22] A.L. Schwarz, R.A. Schwarz, L.L. Carter, MCNP/MCNPX Visual Editor Computer Code Manual, Volume I: Overview and Theory, Los Alamas National Laboraty (2003).
[23] Hughes, H.G., Uncertainties Beyond Statistics in Monte Carlo Simulations, Radiation Protection Dosimetry, 126, no. 1-4, pp 45-51 (2007).
[24] M.D. DeHart, TRITON: A Two-Dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel, ORNL/TM-2005/39 Version6, Vol. II, Sect. T1, Oak Ridge National Labotory (2009).