簡易檢索 / 詳目顯示

研究生: 王聖禎
Wang,Sheng-Chen
論文名稱: 熱處理對鍍著氮氧化鋯薄膜產生相變化及相分離之研究
Post-annealing Induced Phase Transformation and Phase Separation of Zr(O,N) Thin Films
指導教授: 喻冀平
Yu,Ge-Ping
黃嘉宏
Huang,Jia-Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 80
中文關鍵詞: 熱處理相變化相分離
外文關鍵詞: Post-annealing, phase transformation, phase separation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用中空陰極電弧放電法於P型(100)矽晶片上,成功製備單斜晶二氧化鋯奈米晶粒薄膜。實驗中藉氮流量為的單一變數以控制鍍膜過程中的氧/氮流量比。並在鍍膜後,做900℃高溫熱處理一小時候。本研究主要目的在探討二氧化鋯與立方晶之氮氧化鋯(Zr2ON2)薄膜於熱處理前後的相變化與機械性質。藉由X光光電子儀(XPS)可得到鋯、氧、氮的成分。由X光繞射譜圖(XRD)觀察發現,在純鍍膜後單斜晶二氧化鋯為主要結構;在經過熱處理後,純鍍膜過程中氮含量高於20%的試片,其結構都轉為立方晶之氮氧化鋯(Zr2ON2)。根據熱處理後薄膜相變化可以分成三區:ZoneⅠ是以立方晶之氮氧化鋯為主(O/N 流量比為0.6及0.8),ZoneⅡ是以單斜晶二氧化鋯與立方晶之氮氧化鋯混合區(O/N 流量比為2.0),ZoneⅢ是以單斜晶二氧化鋯為主(O/N 流量比為3.0)。ZoneⅡ在熱處理前的試片具有最高的堆疊密度跟硬度。在熱處理後有明顯應力釋放可能來自於缺陷減少的原故。針對氧氮流量比為2.0之試片做不同時間熱處理,在X光繞射譜圖(XRD)與掠角X光繞射譜圖(GIXRD)觀察到不同的相轉換。依相變化將薄膜分成試片表層與試片內層部分:試片表層相轉換為立方晶之氮氧化鋯與殘氧相轉變成單斜晶二氧化鋯,試片內層部分為單斜晶二氧化鋯與氮缺陷相轉變成立方晶二氧化鋯。


    Contents 致謝 i 摘要 iii Abstract iv Contents v List of Figures viii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Deposition Method (HCD-IP) 4 2.2 Characteristics of Zirconium Oxides and Zirconium Oxynitride Thin Films 5 2.2.1 Zirconium Oxides 6 2.2.2 Zirconium Oxynitrides 6 2.2.3 Zr2ON2 8 2.3 Effects of Processing Parameters on the of Zirconium oxynitride (Zr2ON2) and ZrO2 Thin Films 9 2.3.1 The Ratio of Oxygen and Nitrogen Flow during Deposition 9 2.3.2 Heat Treatment 10 Chapter 3 Experimental Details 15 3.1 Specimen Preparation and the Coating Process 15 3.2 Characterization Methods 20 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 20 3.2.2 X-ray Diffraction and Grazing Incident X-ray Diffraction (XRD and GIXRD) 21 3.2.3 Rutherford Backscattering Spectroscopy (RBS) 22 3.2.4 Auger Electron Spectroscopy (AES) 22 3.3Properties Measurements 23 3.3.1 Field-Emission Gun Scanning Electron Microscopy (FE-SEM) 23 3.3.2 Atomic Force Microscopy (AFM) 23 3.3.3 Hardness 23 3.3.4 Residual Stress Measured by the Optical Method 24 Chapter 4 Results 29 4.1 Chemical Composition 29 4.1.1 RBS 29 4.1.2 XPS 34 4.1.3 AES 35 4.2 Microstructure 46 4.2.1 θ/2θ XRD 46 4.2.2 GIXRD 47 4.2.3 SEM 48 4.3 Properties 62 4.3.1 Roughness 62 4.3.2 Hardness 62 4.3.3 Packing Density 62 4.3.4 Residual Stress 63 4.3.5 Dielectric Constant 63 Chapter 5 Discussion 67 5.1 Phase Transformation with Increasing O/N Ratio 67 5.1.1 Zone Ⅰ (m-ZrO2 □ Zr2ON2) 68 5.1.2 Zone Ⅱ (m-ZrO2□mixing of m-ZrO2 and Zr2ON2) 68 5.1.3 ZoneⅢ (m-ZrO2 □ m-ZrO2) 68 5.1.4 In summary 69 5.2 Phase Transformation with Increasing the Annealing Time 69 5.2.1 Layer 1 (m-ZrO2 + Zr2ON2 □ m-ZrO2) 69 5.2.2 Layer 2 (m-ZrO2 + Zr2ON2 □ Zr2ON2) 70 5.2.3 In summary 71 Chapter 6 Conclusions 76 Reference 77

    [1] B. Zega, Surf. Coat. Technol. 39-40 (1989) 507-520
    [2] C. Mitterer, J. Komenda,-Stallmaiter, P. Losbichler, P. Schmolz, W.S.M. Werner and H. Stori, Vacuum 46 (1995) 1281
    [3] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau and J.P. Riviere, Thin Solid Films 469-470 (2004) 11-17
    [4] D. Serverin, K. Sarakinos, O. Kappertz, A. Pflug and M. Wuttig, J. Appl. Phys. 103 (2008) 083306
    [5] S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz and M. Wuttig, Thin Solid Films 502 (2006) 228-234
    [6] S. Venkataraj, O. Kappertz, R. Jayavel and M. Wuttig, J. Appl. Phys. 92 No.5 (2002) 2461-2466
    [7] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel and M. Wuttig, J. Appl. Phys. 92 (2002) 3599-3607
    [8] S. Zhao, F. Ma, Z. Song and K. Xu, Opt. Mater. 30 (2008) 910-915
    [9] S. Venkataraj, O. Kapperta, Ch. Liesch, R. Detemple, R. Jayavel and M. Wuttig, Vacuum 75 (2004) 7-16
    [10] P. Gao, L.J. Meng, M.P. dos Santos, V. Teixeira and M. Andritschky, Vacuum 56 (2000) 143-148
    [11] C. S. Kang, H. J. Cho, Y. H. Kim, C. Y. Kang, S. J. Rhee, C. H. Choi, IEEE Trans. Electron Devices. 51 no.2 (2004) 220-228
    [12] L. Pichon, A. Straboni, T. Girardeau and M. Drouet, J. Appl. Phys. 87 (2000) 925-932
    [13] S. -Y. Lee, H. Kim, P. C. Mclntyre, K. C. Saraswat and J. S. Byun, Appl. Phys. Lett. 82 No 17 (2003) 2874-2876
    [14] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89 (2001) 5243
    [15] Y.Z Hu and S.P. Tay, J. Vac. Sci. Technol., B 19 Is.5 (2001) 1706-1714
    [16] E. Ariza, L.A. Rocha, F.Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J.P. Riviere, Thin Solid Films 469-470 (2004) 274-281
    [17] P. Carvalho, A.C. Fernandes, L. Rebouta, F. Vaz, L. Cunha, U. Kreissig, N.P. Barradas, A.R. Ramos and E. Alves, Nucl. Instrum. Methods Phys. Res., Sect. B 249 (2006) 458-461
    [18] P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J.P. Riviere, E. Alves and A. Cavaleiro, Surf. Coat. Technol. 200 (2005) 748-752
    [19] J.M. Ngaruiya, O. Kappertz, C. Liesch, P. Muller, R. Dronskowski and M. Wuttig, Phys. Status Solidi A 201 No.5 (2004) 967-976
    [20] The handout of “Material science of thin film” by Prof. J. H. Huang
    [21] W. Ensinger, A. Schroer and G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B 80/81 (1993) 445
    [22] R. A. Dugdale, J. of Mater. Sci. 1 (1996) 160.
    [23] F. Fabreguette, L. Imhoff, M. Maglione, B. Domenichini, M. C. Marco de Lucas, P. Sibillot, S. Bourgeios, M. Sacillotti, Chem. Vap. Deposition 6 (2000) 109
    [24] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, J. De Rijk, Thin Solid Films 447-448 (2004) 449
    [25] J. -H. Huang, K. -H. Chang, G. -P. Yu, Surf. Coat. Technol. 201 (2007) 6404
    [26]Z. E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, Master Thesis, 2005, National Tsing Hua University, R.O.C
    [27] S. H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)”, 2006, Master Thesis, National Tsing Hua University, R.O.C
    [28]K. C. Lan, “Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating”, Master Thesis, 2007, National Tsing Hua University, R.O.C
    [29] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2-Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society
    [30] E. Ryshkewitzand D. W. Richardson, Oxide Ceramic, Physical Chemistry and Technology (General Ceramics, Haskell, NJ, 1985)
    [31] Zirconia’88 Advances in Zirconia Science and Technology, edited by S. Meriani (Elsevier, NY, 1989)
    [32] E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed
    [33] P. Pyykko, Chem. Rev. 88 (1988) 563
    [34] W. T. Pawlewicz, D. D. Hays and P. M. Martin, Thin Solid Films 73 (1980) 169-175
    [35] G. Gottardi, N. Laidani, V. Micheli, R. Bartali and M. Anderle, Surf. Coat. Technol. 202 (2008) 2332-2337
    [36] J.C. Gilles, Bulletin de la Societe Chimique de France 22 (1962) 2118
    [37] R. Collongues, J.C. Gilles, A.M. Lejus, M.Perezy Jorba and D. Michel, Mater. Res. Bull. 2 (1967) 837
    [38] J.C. Gilles, Corrosion Anticorrosion 12 (1964) 15
    [39] Y.B. Cheng and D.P. Thompson, Special Ceramics 9 (1992) 149
    [40] Y.B. Cheng and D.P. Thompson, J. Ceram. Soc. 76 (1993) 683
    [41] M. Lerch, F. Krumeich, R. Hock, Solid State Ionics 95 (1997) 87-93
    [42] M. Learch, J. Mater. Sci. Lett. 17 (1998) 441
    [43] D. Severin, O. Kappertz, T. Kubart, T. Nyberg, S. Berg, A. Pflug, M. Siemers and M. Wuttig, Appl. Phys. Lett. 88 (2006) 161504
    [44] A.P. Huang, Ricky K.Y. Fu, Paul K. Chu, L. Wang, W.Y. Cheung, J.B. Xu and S.P. Wong, J. Cryst. Growth 277 (2005) 422-427
    [45] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C.J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J.P. Riviere, J.F. Pierson and O. Banakh, J. Appl. Phys. 98 (2005) 023715
    [46] D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur’yants, M.W. Stoker and A.A. Korkin, J. Appl. Phys. 97 (2005) 044108
    [47] M. Lerch, J. Am. Ceram. Soc. 79 (1996) 2641
    [48] H.J. Cho, C.S. Kang, K. Onichi, S. Gopalan, R. Nieh, S Krishan and C. Lee, IEEE Electron Device Lett. 23 (2002) 249
    [49] S. H. Jeon, C. J. Choi, T. Y. Seong and H. S Hwang, Appl. Phys. Lett. 79 no.2
    (2001) 254-256
    [50] H. Soerijanto, C. Rodel, U. Wild, M. Lerch, R. Schomacker, R. Schlogl and T. Ressler, J. Catal. 250 (2007) 19-24
    [51] S.J Clarke, C.W. Michie and M.J. Rosseinsky, J. Solid State Chem. 146 (1999) 399-405
    [52] T. Mishima, M. Matsuda, M. Miyake, Appl. Catal. A 324 (2007) 77-82
    [53] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 200 (2006) 2917-2922
    [54] L.Q. Zhu, Q. Fang, G. He, M. Kiu, and L. D. Zhang, Nanotechnology 16 (2005) 2865-2869
    [55] N. Konofaos, E.K. Evangelou, X. Aslanoglou, M. Kokkoris, and R. Vlastou, Semicond. Sci. Technol. 19 (2004) 50-53
    [56]J.M. Howard, V. Craciun, C. Essary and R.K. Singh, Appl. Phys. Lett. 81 (2002) 3431-3433
    [57] M. Houssa, M. Naili, C. Zhao, H. Bendes, M.M. Heyns and A. Stesmans, Semicond. Sci. Technol. 16 (2001) 31-38
    [58] D. Briggs and M. P. Seah (eds), “Practical Surface Analysis by AES and XPS”, Wiley, Chichester (1983).
    [59] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html
    [60] P. Scherrer, Gott. Nachr 2 (1918) 98
    [61] JCPD file 89-9066
    [62] W.C. Oliver, G.M Pharr, J. Mater. Res. 7 (1992) 1564
    [63] G.G. Stoney, Proc. R. Soc. Lond., 8 A (1909) 17
    [64] Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf. Sci. Eng., 126 (2004) 10-17.
    [65] I Milosev, H.-H. Strehblow, M. Gaberscek, and B. Navinsek, Surf. Interface Anal. 24 (1996) 448-458
    [66] A. Lyapin, L.P.H. Jeurgens and E.J. Mittemeijer, Acta Mater. 53 (2005) 2925-2935
    [67] H. Wiame, M.-A. Centeno, S. Picard, P. Bastians and P. Grange, J. Eur. Ceram. Soc. 18 (1998) 1293-1299
    [68] M. Matsuoka, S. Isontani, W. Sucasaire, N. Kuratani and K. Ogata, Surf. Coat. Technol. doi:10.1016/j.surfcoat.2007.11.19
    [69] K.C. Lan, Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007
    [70] T.H Wu, Heat Treatment Induced Phase Separation and Phase Transformation of Zr(N,O) Thin Films Deposited by Ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007
    [71] Y.Y. Hu, Phase Transition and Related Properties of Nanocrystalline Zr(N,O) Thin Films by Unbalanced Magnetron Sputtering, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007
    [72] C. Y. Yeh, “Effect of heat treatment under controlled atmosphere on the properties of ZrN film deposited by HCD ion plate”, Master Thesis, 2004, National Tsing Hua University, R.O.C.
    [73] M. Ohring, “Materials Science of Thin Films,Deposition and Structure”, 2nd edition, Academic Press Inc, San Diego, 2002, p. 62.
    [74] J.S. Jeng, S.H. Wang and J.S. chen, J. Vac. Sci. Technol., A 25 (2007) 651-658
    [75] T.C. Lin, Phase Transition, Mechanical Properties and Wettability of Zr(N,O) Thin Films on AISI304 Stainless Steel Substrate, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE