簡易檢索 / 詳目顯示

研究生: 湯其叡
Tang, Qi Rai
論文名稱: 使用可適性量化之結構相似性與位元率最佳化演算法
SSIM-Oriented Rate-Distortion Optimization Using Variance-Adaptive Quantization
指導教授: 黃朝宗
Huang, Chao Tsung
口試委員: 賴永康
王家慶
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 40
中文關鍵詞: 結構相似性位元率失真最佳化
外文關鍵詞: SSIM, Rate-Distortion Optimization
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近年來,以Structure Similarity (SSIM) 為基礎做運算的Rate-Distortion Optimization (RDO) 已經廣被大家所研究並且發展得相當成熟,且比傳統以Mean Square Error (MSE) 為基礎的RDO更能符合人眼視覺上的評測。但由於以SSIM為基礎的RDO的計算複雜度比以MSE為基礎的RDO高出許多,在這裡我們使用計算比SSIM簡單又跟SSIM有良好相關性的Noise-to-Signal Ratio (NSR) 來近似SSIM。
    首先為了證明NSR與SSIM有良好相關性,我們對NSR跟SSIM進行一系列相關性的分析,並且不同以往one-16x16-macroblock,我們提出four-8x8-macroblock的平均作為計算單位,會對這兩種做法做比較。
    經由前面的實驗我們可以知道NSR與SSIM確實有良好的相關性,所以我們利用NSR作為distortion metric,並且發現在不同variance的區域可以使用不同QP來量化,所以提出利用變異數調整QP大小的Variance -Adaptive Quantization (VAQ) 做最佳化並在JM17.0上進行實驗,實驗結果顯示與JM17.0相比平均可以省下12%-23.3%的bitrate。


    In recent years, rate-distortion optimization for structural similarity (SSIM) has been well developed and studied to improve visual quality for video coding. SSIM is also well matched to human visual system and has better perceptual quality than MSE. Because of complex computation of SSIM, we used Noise-to-Signal Ratio (NSR) to approximate SSIM.
    First, in order to explain that NSR has good correlation with SSIM, we did some analysis on N SR and SSIM. What is different from previous work is that we proposed four-8x8-macroblock and nine-8x8-macroblock as our calculation unit instead of one-16x16-macroblock. Then we compared these three configurations and chose the better one: four-8x8-macroblock.
    From the experiments above, we knew NSR has good correlation with SSIM indeed, so we used NSR as our distortion metric. We also found that regions with different variances can use different quantization steps to improve quality in terms of SSIM. Therefore, we proposed a variance-adaptive quantization algorithm which uses variance to scale quantization parameters. The experiment results using JM17.0 shows that we can save 12% - 23.3% bitrate compared with the original JM17.0.

    摘 要 i Abstract ii Contents iii List-of-Figure v List-of-Table vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Work 2 1.2.1 Rate-Distortion Optimization 2 1.2.2 Structural Similarity 5 1.2.3 SSIM-based Rate-Distortion Optimization 7 1.3 Overview 9 Chapter 2 Noise-to-Signal Ratio 11 2.1 SSIM approximation using NSR 11 2.2 NSR V.S SSIM 12 2.2.1 Frame-based NSR 12 2.2.2 Block-based NSR 16 2.3 Summary 18 Chapter 3 Variance-Adaptive Quantization 19 3.1 Basic concept 19 3.2 Apply MSE framework 20 3.3 Proposed Algorithm 21 3.4 Algorithm Flow 23 Chapter 4 Experiment and Result 24 4.1 Experiment Setting 24 4.2 Results 25 4.2.1 Four-8x8-MB-A vs.One-16x16-MB 25 4.2.2 Comparison with JM17.0 28 4.2.3 Comparison with other methods 33 Chapter 5 Conclusion and Future Work 37 5.1 Conclusion 37 5.2 Future work 38 References 39

    [1] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,Nov. 1998.

    [2] T. Wiegand and B. Girod, “Lagrange multiplier selection in hybrid video
    coder control,” in Proc. Int. Conf. Image Process., 2001, pp. 542–545.

    [3] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

    [4] Y.-H. Huang, T.-S. Ou, P.-Y. Su, and H. H. Chen, “Perceptual ratedistortion
    optimization using structural similarity index as quality metric,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, pp. 1614–1624, Nov. 2010.

    [5] S. Wang, A. Rehman, W. Wang, S. Ma, and W. Gao, “SSIM-motivated rate distortion optimization for video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 4, pp. 516–529, Apr. 2012.

    [6] C. Yeo, H. L. Tan, and Y. H. Tan, “On rate-distortion optimization using SSIM,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Mar. 2012, pp. 833–836.

    [7] Z.-Y. Mai, C.-L. Yang, L.-M. Po, and S.-L. Xie, “A new rate-distortion optimization using structural information in H.264 I-frame encoder,” in Advanced Concepts for Intelligent Vision Systems. Berlin, Germany:Springer, 2005, pp. 435–441.

    [8] C.-L. Yang, H.-X. Wang, and L.-M. Po, “Improved inter prediction based on structural similarity in H.264,” in Proc. IEEE Int. Conf. Signal Process. Commun., Nov. 2007, pp. 340–343.

    [9] C.-L. Yang, R.-K. Leung, L.-M. Po, and Z.-Y. Mai, “An SSIM-optimal H.264/AVC inter frame encoder,” in Proc. IEEE Int. Conf. Intell. Comput. Intell. Syst., vol. 4. Nov. 2009, pp. 291–295.

    [10] H. H. Chen, Y.-H. Huang, P.-Y. Su, and T.-S. Ou, “Improving video coding quality by perceptual rate-distortion optimization,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2010, pp. 1287–1292.

    [11] S. Wang, S. Ma, and W. Gao, “SSIM based perceptual distortion rate optimization coding,” in Proc. SPIE Visual Commun. Image Process. Conf., vol. 7744. 2010.

    [12] N.S. Jayant and Peter Noll , Digital coding of waveforms:Principles and applications to speech and video,Prentice Hall,Nar.1984.

    [13] Z. Miličević, Z. Bojković „Subjective video quality assessment in H.264/AVC video coding standard“, Proceeding of XIX Telecommunication forum TELFOR 2011, pp. 1183-1186,Belgrade, Serbia, 22-24. November 2011.

    [14] ITU-R BT.710-4 Subjective Assessment Methods for Image Quality in High-Definition Television. Jan 1998.

    [15] P. Hanhart, et. al., “Subjective quality evaluation of the upcoming HEVC video compression standard,” in Proc. SPIE, Applications of Digital Image Processing,2012.

    [16] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-constrained coder control and comparison of video coding standards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp.688–703, Jul. 2003.

    [17] S. Winkler, “A perceptual distortion metric for digital color video,” in
    Proc. SPIE, vol. 3644, 1999, pp. 175–184.

    [18] D. A. Silverstein and J. E. Farrell, “The relationship between image fidelity
    and image quality,” in Proc. IEEE Int. Conf. Image Processing,1996, pp. 881–884.

    [19] C. J. van den Branden Lambrecht and O.Verscheure, “Perceptual quality
    measure using a spatio-temporal model of the human visual system,” in Proc. SPIE, vol. 2668, 1996, pp. 450–461.

    [20] Z. Wang, Q. Li, and X. Shang, “Perceptual image coding based on a maximum of minimal structural similarity criterion,” in Proc. IEEE Int.Conf. Image Process., vol. 2. Oct. 2007, pp. 121–124.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE