研究生: |
陳仁安 Chen, Ren An |
---|---|
論文名稱: |
以縮孔的二氧化矽SBA-15為模板製備之白金奈米材料於電化學氧氣還原反應之應用 Pore Size Reduction in Silica SBA-15 Template for Replication to Nanostructured Platinum Materials and the Application in Electrochemical Oxygen Reduction Reaction |
指導教授: |
楊家銘
Yang, Chia Min |
口試委員: |
洪嘉呈
Horng, Jia Cherng 林弘萍 Lin, Hong Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 中孔洞二氧化矽 、硬模板製備法 、中孔洞白金 、電極觸媒 、氧氣還原反應 |
外文關鍵詞: | Mesoporous silica, Hard template preparation, Mesoporous platinum, Electrode catalyst, Oxygen reduction reaction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們利用片狀型態中孔洞二氧化矽SBA-15為初始模板,藉由初濕含浸法,含浸矽源溶液,搭配尿素因溫度升高而改變溶液pH值的化學性質,成功將SBA-15的孔洞縮小,同時增加孔洞材料的壁厚。這裡我們利用此縮小孔洞的片狀SBA-15為模板,藉由熔融態含浸法以及氫氣還原的方式製備出白金反結構,並應用於電化學氧氣還原反應。此白金奈米材料之白金線較細,且間距較大,除了能提高表面積之外,也能降低電雙層的影響,所以在電化學反應上擁有更高的電化學活性表面積(ECSA)和質量活性(MA),而我們實驗室發表之中孔洞白金奈米球,即是因為白金線間距過近而受到電雙層的限制,讓內部白金表面無法參與電化學反應,造成白金的利用率不高。因此,我們利用縮孔處理後的SBA-15為模板製備白金反結構,能有效提升白金的利用率以及電催化活性。
In this study, we chose SBA-15 with platelet morphology as template to synthesize nanostructured Pt replica and applied it to electrochemical oxygen reduction reaction. We impregnated TMOS and urea solution into platelet-like SBA-15 by incipient wetness impregnation, and successfully reduced the pore size of SBA-15 and also increased the thickness of the pore wall. We further used this pore-size-reduced SBA-15 as template to synthesize Pt replica by impregnating molten metal precursor followed by hydrogen reduction. As for the electrochemical oxygen reduction reaction, the Pt replica performed high electrochemical activity surface area and mass activity. This platinum material replicated from pore - size - reduced SBA-15 has thinner Pt wires and wider space between adjacent Pt wires. As the result, the material exhibited larger surface area and less influence in the electrical double layer.
(1) Beck, J. S.; Vartuli, J. C.; Ruth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc. 1992, 114, 10834.
(2) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(3) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew. Chem. Int. Ed. 2006, 45, 3216.
(4) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682.
(5) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
(6) Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109.
(7) Galarneau, A.; Cambon, N.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2003, 27, 73.
(8) Chen, S.-Y.; Tang, C.-Y.; Chuang, W.-T.; Lee, J.-J.; Tsai, Y.-L.; Chan, J. C. C.; Lin, C.-Y.; Liu, Y.-C.; Chen, S. Chem. Mater. 2008, 20, 3906.
(9) He, Q.; Shi, J.; Zhao, J.; Chen, Y.; Chen, F. J. Mater. Chem. 2009, 19, 6498.
(10) Saramat, A.; Thormahlen, P.; Skoglundh, M.; Attard, G. S.; Palmqvist, A. E. C. J. Catal. 2008, 253, 253.
(11) Lolli, A.; Amadori, R.; Lucarelli, C.; Cutrufello, M. G.; Rombi, E.; Cavani, F.; Albonetti, S. Microporous Mesoporous Mater. 2016, 226, 466.
(12) Bauer, A.; Wilkinson, D. P.; Gyenge, E. L.; Bizzotto, D.; Ye, S. J. Electrochem. Soc. 2009, 156, B1169.
(13) Kucernak, A.; Jiang, J. H. Chem. Eng. J. 2003, 93, 81.
(14) Chen, P.-K.; Lai,N.-C.; Ho, C.-H.; Hu,Y.-W.; Lee, J.-F.; Yang, C.-M. Chem. Mater. 2013, 25, 4269.
(15) Chen, F.; Wang, J.; Huang, L.; Bao, H.; Shi, Y. Chem. Mater. 2016, 28, 608.
(16) Han, J. H.; Choi, H. N.; Park, S.; Chung, T. D.; Lee, W. Y. Anal. Sci. 2010, 26, 995.
(17) Ghanem, M. A. Electrochem. Commun. 2007, 9, 2501.
(18) Attard, G. S.; Goltner, C. G.; Corker, J. M.; Henke, S.; Templer, R. H. Angew. Chem. Int. Ed. 1997, 36, 1315.
(19) Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Science 1997, 278, 838.
(20) Yamauchi, Y.; Kuroda, K. Chem. Asian J. 2008, 3, 664.
(21) Sugimoto, W.; Makino, S.; Mukai, R.; Tatsumi, Y.; Fukuda, K.; Takasu, Y.; Yamauchi, Y. J. Power Sources 2012, 204, 244.
(22) Bartlett, P. N.; Pletcher, D.; Esterle, T. F.; John Low, C. T. J. Electroanal. Chem. 2013, 688, 232.
(23) Yamauchi, Y.; Komatsu, M.; Fuziwara, M.; Nemoto, Y.; Sato, K.; Yokoshima, T.; Sukegawa, H.; Inomata, K.; Kuroda, K. Angew. Chem. Int. Ed. 2009, 48, 7792.
(24) Malgras, V.; Ataee-Esfahani, H.; Wang, H.; Jiang, B.; Li, C.; Wu, K. C.-W.; Kim, J. H.; Yamauchi, Y. Adv. Mater. 2016, 28, 993.
(25) Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
(26) Liu, Z.; Sakamoto, Y.; Ohsuna, T.; Hiraga, K.; Terasaki, O.; Ko, C. H.; Shin, H. J.; Ryoo, R. Angew. Chem. Int. Ed. 2000, 39, 3107.
(27) Shin, H. J.; Ryoo, R; Liu, Z; Terasaki, O. J. Am. Chem. Soc. 2001, 123, 1246.
(28) Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M. Microporous Mesoporous Mater. 1998, 21, 597.
(29) Sasaki, M.; Osada, M.; Higashimoto, N.; Yamamoto, T.; Fukuoka, A.; Ichikawa, M. J. Mol. Catal. A-Chem. 1999, 141, 223.
(30) Wang, D. H.; Jakobson, H. P.; Kou, R.; Tang, J.; Fineman, R. Z.; Yu, D. H.; Lu, Y. F. Chem. Mater. 2006, 18, 4231.
(31) Takai, A.; Ataee-Esfahani, H.; Doi, Y.; Fuziwara, M.; Yamauchi, Y.; Kuroda, K. Chem. Commun. 2011, 47, 7701.
(32) Doi, Y.; Takai, A.; Sakamoto, Y.; Terasaki, O.; Yamauchi, Y.; Kuroda, K. Chem. Commun. 2010, 46, 6365.
(33) Takai, A.; Doi, Y.; Yamauchi, Y.; Kuroda, K. Chem. Asian J. 2011, 6, 881.
(34) Bender F.; Mankelow R. K.; Hibbert D. B.; Gooding J. J. Electroanal. 2006, 18, 1558.
(35) Yang, C. M.; Sheu, H. S.; Chao, K. J. Adv. Funct. Mater. 2002, 12, 143.
(36) Karthika, P.; Ataee-Esfahani, H.; Wang, H.; Francis, M. A.; Abe, H.; Rajalakshmi, N.; Dhathathreyan, K. S.; Arivuoli, D.; Yamauchi, Y. Chem. Asian J. 2013, 8, 902.
(37) PEM Fuel Cell Electrocatalysts and Catalyst Layers Fundamentals and Applications; Zhang, J., Ed.; Springer, 2008.
(38) The US Department of Energy (DOE). Energy Efficiency and Renewable Energy.
(39) PEM Fuel cells: Theory and Practice; Barbir, F., Ed.; Elsevier, 2005.
(40) Costamagna, P.; Srinivasan, S. J. Power Sources 2001, 102, 242.
(41) Acres, G. J. K.; Frost, J. C.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett, D.; Burstein, G. T.; Hutchings, G. J. Catal. Today 1997, 38, 393.
(42) Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 8945.
(43) Gotz, M.; Wendt, H. Electrochim. Acta 1998, 43, 3637.
(44) Papageorgopoulos, D. C.; Keijzer, M.; de Bruijn, F. A. Electrochim. Acta 2002, 48, 197.
(45) Ma, L.; Zhang, H. M.; Liang, Y. M.; Xu, D. Y.; Ye, W.; Zhang, J. L.; Yi, B. L. Catal. Commun. 2007, 8, 921.
(46) Nagasawa K.; Takao S.; Higashi K.; Nagamatsu S.; Samjeske G.; Imaizumi Y.; Sekizawa O.; Yamamoto T.; Uruga T.; Iwasawa Y. Phys. Chem. Chem. Phys. 2014, 16, 10075.
(47) Wilson, M. S.; Valerio, J. A.; Gottesfeld, S. Electrochim. Acta 1995, 40, 355.
(48) Polymer Electrolyte Fuel Cell Durability; Büchi, F. N.; Inaba, M.; Schmidt, T. J., Eds.; Springer, 2009.
(49) Shao-Horn, Y.; Sheng, W. C.; Chen, S.; Ferreira, P. J.; Holby, E. F.; Morgan, D. Top. Catal. 2007, 46, 285.
(50) Ferreira, P. J.; la O, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256.
(51) Xie, J.; Wood, D. L.; Wayne, D. M.; Zawodzinski, T. A.; Atanassov, P.; Borup, R. L. J. Electrochem. Soc. 2005, 152, A104.
(52) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220.
(53) Wang, X.; Li, W. Z.; Chen, Z. W.; Waje, M.; Yan, Y. S. J. Power Sources 2006, 158, 154.
(54) Kakade B. A.; Wang H.; Tamaki T.; Ohashi H.; Yamaguchi T. RSC Adv. 2013, 3, 10487.
(55) Zhou Y.; Zhang D. J. Power Sources 2015, 278, 396.
(56) Gümeci C.; Cearnaigh D. U.; Casadonte D. J.; Korzeniewski C. J. Mater. Chem. A 2013, 1, 2322.
(57) Park H.-Y.; Jeon T.-Y.; Jang J. H.; Yoo S. J.; Choi K.-H.; Jung N.; Chung Y.-H.; Ahn M.; Cho Y.-H.; Lee K.-S.; Sung Y.-E. Appl. Catal. B 2013, 129, 375.
(58) Arumugam B.; Kakade B. A.; Tamaki T.; Arao M.; Imai H.; Yamaguchi T. RSC Adv. 2014, 4, 27510.
(59) Guo S.; Li D.; Zhu H.; Zhang S.; Markovic N. M.; Stamenkovic V. R.; Sun S. Angew. Chem. Int. Ed. 2013, 52, 3465.
(60) Yeh T.-H.; Liu C.-W.; Chen H.-S.; Wang K.-W. Electrochem. Commun. 2013, 31, 125.
(61) Dubau L.; Lopez-Haro M.; Durst J.; Guétaz L.; Bayle-Guillemaud P.; Chatenet M.; Maillard F. J. Mater. Chem. A 2014, 2, 18497.
(62) Dubau L.; Asset T.; Chattot R.; Bonnaud C.; Vanpeene V.; Nelayah J.; Maillard F. ACS Catal. 2015, 5, 5333.
(63) Zhu H.; Zhang S.; Guo S.; Su D.; Sun S. J. Am. Chem. Soc. 2013, 135, 7130.
(64) Wang G.; Huang B.; Xiao L.; Ren Z.; Chen H.; Wang D.; Abruña H. D.; Lu J.; Zhuang L. J. Am. Chem. Soc. 2014, 136, 9643.
(65) Duan H.; Hao Q.; Xu C. J. Power Sources 2014, 269, 589.
(66) Duan H.; Hao Q.; Xu C. J. Power Sources 2015, 280, 483.
(67) Duan H.; Xu C. Electrochim. Acta 2015, 152, 417.
(68) Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J. J. Am. Chem. Soc. 2011, 133, 11716.
(69) Xie X.; Chen S.; Ding W.; Nie Y.; Wei Z. Chem. Commun. 2013, 49, 10112.
(70) Xie X.; Xue Y.; Li L.; Chen S.; Nie Y.; Ding W.; Wei Z. Nanoscale 2014, 6, 11035.
(71) Lee, M.; Uchida, M.; Tryk, D. A.; Uchida, H.; Watanabe, M. Electrochim. Acta 2011, 56, 4783.
(72) Cai K.; Liu J.; Zhang H.; Huang Z.; Lu Z.; Foda M. F.; Li T.; Han H. Chem. Eur. J. 2015, 21, 7556.
(73) John S. S.; Atkinson III R. W.; Dyck O.; Sun C.-J.; Zawodzinski Jr. T. A.; Papandrew A. B. Chem. Commun. 2015, 51, 16633.
(74) Alia S. M.; Zhang G.; Kisailus D.; Li D.; Gu S.; Jensen K.; Yan Y. Adv. Funct. Mater. 2010, 20, 3742.
(75) Liang H.-W.; Cao X.; Zhou F.; Cui C.-H.; Zhang W.-J.; Yu S.-H. Adv. Mater. 2011, 23, 1467.
(76) Xia B. Y.; Ng W. T.; Wu H. B.; Wang X.; Lou X. W. Angew. Chem. Int. Ed. 2012, 51, 7213.
(77) Eid K.; Malgras V.; He P.; Wang K.; Aldalbahi A.; Alshehri S.M.; Yamauchi Y.; Wang L. RSC Adv. 2015, 5, 31147.
(78) Zheng J.-N.; He L.-L.; Chen C.; Wang A.-J.; Ma K.-F.; Feng J.-J. J. Power Sources 2014, 268, 744.
(79) Fu G.; Wu K.; Lin J.; Tang Y.; Chen Y.; Zhou Y.; Lu T. J. Phys. Chem. C 2013, 117, 9826.
(80) Song P.; Li S.-S.; He L. L.; Feng J.-J.; Wu L.; Zhong S.-X.; Wang A.-J. RSC Adv. 2015, 5, 87061.
(81) Wang H.; Imura M.; Nemoto Y.; Park S.-E.; Yamauchi Y. Chem. Asian J. 2012, 7, 802.
(82) Wang, H.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki, O.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 14526.
(83) Han, J.-H.; Lee, E.; Park, S.; Chang, R.; Chung, T. D. J. Phys. Chem. C 2010, 114, 9546.
(84) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K. S. W., Ed.; Elsevier, 2013.
(85) Lee, S. J.; Pyun, S. I.; Lee, S. K.; Kang, S. J. L. Isr. J. Chem. 2008, 48, 215.
(86) Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302
(87) Boo, H.; Park, S.; Ku, B.; Kim, Y.; Park, J. H.; Kim, H. C.; Chung, T. D. J. Am. Chem. Soc. 2004, 126, 4524
(88) Stamenkovic V.; Schmidt T. J.; Ross P. N.; Markovic N. M. J. Phys. Chem. B 2002, 106, 11970.