簡易檢索 / 詳目顯示

研究生: 宋法欣
論文名稱: 具奈米多孔性陽極氧化鋁之軟性液晶顯示結構振動與熱應力分析
Thermal Stress and Vibration Analysis of Flexible LCD Structure with Nanoporous AAO Thin Film
指導教授: 葉孟考
口試委員: 蔣長榮
鄭仙志
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 138
中文關鍵詞: 軟性液晶顯示器奈米多孔性陽極氧化鋁熱應力熱應變自然頻率共振模態
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重於具有奈米多孔性陽極氧化鋁之可撓性液晶顯示裝置,首先利用有限單元分析方法,以有限單元軟體ANSYS®得到奈米多孔性陽極氧化鋁隨孔隙率變化之機械性質及熱傳導與熱膨脹係數,接著研究具有奈米多孔性陽極氧化鋁之可撓性液晶顯示器結構,探討製備疊層薄板時的陽極氧化溫度對結構內熱應力與熱變形所造成的影響,以求出最適合進行製備結構之製程溫度。最後則針對液晶顯示器整體於運作時之熱應力與熱變形進行分析,並找尋顯示器結構之共振頻率與共振模態。在實驗部分,本研究進行紅外線熱像儀溫度量測實驗與振動量測實驗。紅外線熱像儀量測試片於加熱時表面溫度場分佈,對液晶顯示器運作時結構之溫度分佈進行驗證,而振動量測以雷射都卜勒振動量測儀對受到激振之試片進行量測並與模擬結果比對,以確保顯示器之共振頻率與共振模態分析之正確性。根據研究結果,在較低的溫度(5 ℃)進行陽極氧化反應,氧化鋁的製備較為順利且顯示器運作時具有較小熱應力,顯示器結構前五共振模態之頻率則落在63.35 Hz至117.04 Hz間。藉由以上分析與實驗,本研究可對可撓性液晶顯示器之研究提供可靠度的分析與設計上的參考。


    This study focus on the flexible LCD device with nanoporous anodic aluminum oxide. The finite element software ANSYS ® was used to obtain the mechanical properties, thermal conductivity and thermal expansion coefficient of the nanoporous anodic aluminum oxide. In order to find the most suitable process temperature for the preparation of the LCD structure, the thermal stress and the thermal deformation of the LCD structure during manufacturing process and in operation were discussed, and the resonance frequency and the resonance modes of the display structure were also obtained. In the experiment, the infrared temperature measurement experiment and vibration measurement experiment were performed in this study. The results showed that the best temperature at the process is 5 ℃ and the 1st ~5th resonance frequency of resonance modes are between 63.35 Hz and 117.04 Hz. By the analysis and experimental mentioned above, we expect this study can provide some references for the analysis and the reliability design in flexible LCD.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表目錄 VIII 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1奈米多孔性陽極氧化鋁之製備與材料性質 2 1.2.2 ITO與PET之製備、實驗與應用 3 1.2.3顯示器結構振動分析與實驗 4 1.2.4顯示器結構熱傳導及熱膨脹分析與實驗 6 1.3研究主題 7 第二章 有限單元分析 9 2.1陽極氧化鋁之機械性質分析 10 2.1.1複合材料力學理論 10 2.1.2有限單元模型建立與網格化 11 2.1.3邊界條件與施加負載設定 12 2.2具液晶之多孔性陽極氧化鋁熱傳性質分析 15 2.2.1液晶之熱傳導性質 15 2.2.2有限單元熱傳導理論 16 2.2.3有限單元模型建立與網格化 18 2.2.4邊界條件與施加負載設定 19 2.3疊層薄板製程熱變形分析 19 2.3.1疊層薄板製備過程 19 2.3.2陽極氧化過程之熱變形分析 20 2.3.3製備完成薄板之熱變形分析 21 2.3.4網格測試 21 2.3.5有限單元模型建立與網格化 24 2.3.6邊界條件與施加負載設定 24 2.4 疊層薄板製程熱應力分析 25 2.4.1有限單元熱應力理論 26 2.4.2陽極氧化過程之熱應力分析 27 2.4.3製備完成薄板之熱應力分析 27 2.4.4有限單元模型建立與網格化 28 2.4.5 邊界條件與施加負載設定 28 2.5液晶顯示器運作熱變形分析 29 2.5.1有限單元模型建立與網格化 30 2.5.2邊界條件與施加負載設定 30 2.6液晶顯示器運作熱應力分析 31 2.6.1有限單元模型建立與網格化 32 2.6.2邊界條件與施加負載設定 32 2.7液晶顯示器結構振動分析 32 2.7.1結構振動相關理論 33 2.7.2 網格測試 34 2.7.3有限單元模型建立與網格化 36 2.7.4邊界條件與施加負載設定 37 第三章 實驗方法 38 3.1紅外線熱像儀溫度量測實驗 38 3.1.1實驗原理 38 3.1.2實驗流程與操作方法 38 3.1.3對照組之模擬分析 39 3.2振動量測實驗 40 3.2.1實驗原理 40 3.2.2實驗流程與操作方法 41 3.2.3對照組之模擬分析 42 第四章 模擬與實驗結果 43 4.1陽極氧化鋁機械性質分析結果 43 4.1.1隨孔隙率變化之陽極氧化鋁楊氏模數分析結果 43 4.1.2隨孔隙率變化之陽極氧化鋁剪力模數分析結果 43 4.1.3隨孔隙率變化之陽極氧化鋁波桑比分析結果 44 4.1.4陽極氧化鋁熱膨脹係數分析結果 44 4. 2 具液晶之多孔性陽極氧化鋁熱傳性質分析結果 45 4. 2 .1填充液晶之氧化鋁熱傳導係數分析結果 45 4.3疊層薄板於陽極氧化過程熱變形分析結果 45 4.3.1疊層薄板變形量與製程溫度之關係 45 4.3.2疊層薄板變形量與薄板固定方式之關係 46 4.4製備完成薄板熱變形分析結果 46 4.4.1製備完成薄板於室溫下變形量與製程溫度之關係 46 4.5疊層薄板於陽極氧化過程熱應力分析結果 47 4.5.1製程溫度與熱應力之關係 47 4.5.2材料種類與熱應力之關係 48 4.5.3陽極氧化階段與熱應力之關係 48 4.5.4熱應力之方向性與材料脫層之關係 49 4.5.5全域模型與子模型分析結果驗證 49 4.6製備完成薄板熱應力分析結果 50 4.6.1製程溫度與薄板回復至室溫後殘留熱應力之關係 50 4.6.2移除屏障層前後殘留熱應力比較 51 4.7液晶顯示器運作熱變形分析結果 51 4.7.1運作溫度與顯示器變形量之關係 51 4.7.2製程溫度與顯示器變形量之關係 51 4.8液晶顯示器運作熱應力分析結果 52 4.8.1顯示器運作溫度與最大應力之關係 52 4.8.2顯示器製程溫度與最大應力之關係 52 4.8.3全域模型與子模型分析結果驗證 53 4.9液晶顯示器結構振動分析結果 54 4.9.1液晶顯示結構之共振頻率 54 4.9.2液晶顯示結構之共振模態 54 4.10紅外線熱像儀溫度量測實驗結果 55 4.10.1紅外線熱像儀溫度分佈影像圖 55 4.10.2有限單元模擬對照組分析結果 55 4.10.3模擬結果與實驗結果比較 55 4.11 振動量測實驗結果 56 4.11.1有限單元模擬對照組分析結果 56 4.11.2振動量測實驗結果 56 4.11.3模擬結果與實驗結果比較 57 第五章 結論 58 參考文獻 59 圖表 66

    參考文獻
    1. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, “Hexagonal Pore Arrays With a 50–420 Nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” Journal of Applied Physics 84, pp. 6023–6026, 1998.
    2. M. Ghorbani, F. Nasirpouri, A. I. Zad and A. Saedi, “On the Growth Sequence of Highly Ordered Nanoporous Anodic Aluminium Oxide,” Materials and Design, Vol. 27, pp. 983-988, 2006.
    3. H. J. Kang, D. J. Kim, S. J. Park, J. B. Yoo and Y. S. Ryu, “Controlled Drug Release Using Nanoporous Anodic Aluminum Oxide on Stent,” Thin Solid Films, Vol. 515, pp. 5184-5187, 2007.
    4. S. H. Ko, D. W. Lee, S. E. Jee, H. C. Park, K. H. Lee and W. Hwang, ” Mechanical Properties and Residual Stress Measurements in Anodic Aluminum Oxide Structures Using Nanoindentation,” Glass Physics and Chemistry, Vol. 31, No. 3, pp. 356-363, 2005.
    5. R.F. Gibson, Principles of Composite Material Mechanics Second Edition, CRC Press, pp. 55–77, 2007.
    6. B Hassani, E. Hinton, “A Review of Homogenization and Topology Optimization Ihomogenization Theory for Media with Periodic Structure,” Computers and Structures, Vol. 69, No. 6, pp. 707-717, 1998.
    7. R. P. Vinci and J. J. Vlassak, “Mechanical Behavior of Thin Films,” Annual Reviews, Vol. 26, pp. 431-462, 1996.
    8. W. N. Sharpe, Jr., B. Yuan and R. L. Edwards, ”A New Technique for Measuring the Mechanical Properties of Thin Films,” Journal of Microelectromechanical Systems, Vol. 6, No. 3, pp. 193-199, 1997.
    9. S. Ko, D. Lee, S. Jee, H. Park, K. Lee and W. Hwang, “Mechanical Properties and Residual Stress in Porous Anodic Alumina Structures,” Thin Solid Films, Vol. 515, No. 4, pp. 1932-1937, 2006.
    10. K. Gall, Y. Liu, D. Routkevitch and D. S. Finch, “Instrumented Microindentation of Nanoporous Alumina Films,” Journal of Engineering Materials and Technology, Vol. 128, No. 2, pp. 225-232, 2006.
    11. R. Saha and W. D. Nix, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation,” Acta Materialia, Vol. 50, No. 1, pp. 23-38, 2002.

    12. O. Son, J. Jeong and D. Kwon, “Film-thickness Considerations in Microcantilever-beam Test in Measuring Mechanical Properties of Metal Thin Film,” Thin Solid Films, Vol.437, pp. 182-187, 2003.
    13. Z. Jiao, M. Wu, J. Gu and X. Sun, “The Gas Sensing Characteristics of ITO Thin Film Prepared by Sol–gel Method,” Sensors and Actuators, Vol. 94(B), pp. 216–221, 2003.
    14. D.G. Neerinck and T.J. Vink, “Depth Profiling of Thin ITO Films by Grazing Incidence X-ray Diffraction,” Thin Solid Films, Vol. 278, pp.12-17, 1996.
    15. Z. Yu, L. Xiang, W. Xue and H. Wang, “The Bending Properties of Flexible ITO Films” Optical Fiber Communication and Optoelectronics Conference 2007 Asia, pp. 148 – 150, 2007.
    16. S.K. Lee and J.U. Lee, “The Fracture in ITO Coating with Compressive Bending Stress on Polymers Substrates,” Transactions on Electrical and Electronic Materials, Vol. 4, No. 6, pp. 5-8, 2003.
    17. S.K. Park, J.I. Han, D.G. Moon and W.K. Kim, “Improvement of Mechanical Property of Indium-tin-oxide Films on Polymer Substrate by Using Organic Buffer Layer,” Transactions on Electrical and Electronic Materials, Vol. 3, No. 2, pp. 32-37, 2002.
    18. Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee and J.R. Lee, “Criteria for ITO (Indium–tin-oxide) Thin Film as the Bottom Electrode of an Organic Light Emitting Diode,” Thin Solid Films, Vol. 411, pp. 12–16, 2002.
    19. T.C. Lin, S.C. Yu, P.S. Chen, K.Y. Chi, H.C. Pan and C.Y. Chao, “Fabrication of Alignment Layer Free Flexible Liquid Crystal Cells Using Thermal Nanoimprint Lithography,” Current Applied Physics, Vol. 9, pp. 610–612, 2009.
    20. Y. Zhou, L. Hu and G. Grüner, “A Method of Printing Carbon Nanotube Thin Films,” Applied Physics Letters, Vol. 88, pp. 123109.1-123109.3, 2006.
    21. F.N. Ishikawa, H.K. Chang, K. Ryu, P.C. Chen, A. Badmaev, L. G. D. Arco, G. Shen and C. Zhou, “Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates,” ACS Nano, Vol.3, No. 1, pp 73–79, 2009.
    22. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, R. Mertens, R. Andriessen and L. Leenders, “Printable Anodes for Flexible Organic Solar Cell Modules,” Thin Solid Films, Vol. 451-452, pp. 22–25, 2004.
    23. J. N. Butters and J. A. Leendertz, “Speckle Pattern and Holographic Techniques in Engineering Metrology,” Optical and Laser Technology 4, pp. 349-354, 1971.

    24. B. Lu, H. Abandroth, H. Egger and E. Ziolkowski, X. Yang, “Real Time Investigation of Rotating Objects using ESPI System,” Proceedings of SPIE 1026, pp. 218-221, 1988.
    25. S. Ellingsrud and G. O. Rosvold, “Analysis of a Data-based TV-holography System Used to Measure Small Vibration Amplitudes,” Journal of The Optical Society of America A-optics Image Science And Vision, Vol. 9, pp. 237-251, 1992.
    26. K. Hφgmoen and O. J. Lφkberg, “Detection and Measurement of Small Vibrations using Electronic Speckle Pattern Interferometry,” Applied Optics, Vol. 16, No. 7, pp. 869-1875, 1977.
    27. W. C. Wang, C. H. Hwang and S. Y. Lin, “Vibration Measurement by the Time-Averaged Electronic Speckle Pattern Interferometry Methods,” Applied Optics, Vol. 35, No. 22, pp. 4502-4509, 1996.
    28. O. Nishizawa, T. Satoh and X. Lei, “Detection of Shear Wave in Ultrasonic Range by using a Laser Doppler Vibrometer,” Review of Scientific Instruments, Vol. 69, pp. 2572-2573, 1998.
    29. G. L. Rossi, C. Santolini, M. Giachi and S. Generosi, “The Application of a Laser Scanning Vibrometer for Dynamic Characterization of Large Impellers,” Measurement, Vol. 24, No. 1, pp.33-41, 1998.
    30. F. P. Sun, L. D. Mitchell and J. R. F. Arruda, “Mode Decoupling Considerations in Mode Shape Measurements of a Plate with Monoexcitation and Laser Doppler Vibrometer,” Experimental Techniques, Vol. 17, pp. 31-37, 1993.
    31. K. Park, S. Kim, S. Yoon and J. Ryu, “Development of Continuous Scanning Laser Doppler Vibrometer for Vibration Mode Shape Analysis,” Proceedings of the 2000 IEEE International Conference on Control, pp. 554-559, 2000.
    32. B. K. A. Ngoi, K. Venkatakrishnan, and B. Tan, “Laser Scanning Heterodyne Interferometer for Micro-components,” Optics Communication 173, pp. 291-301, 2000.
    33. H. Y. Lin and C. C. Ma, “Experimental Investigations on Dynamic Characteristics of a Multilayer Piezoelectric Stack Actuator,” The Chinese Journal of Mechanics-Series A, Vol.18, No. 2, pp. 95-102, 2002.
    34. 鄭宗杰、余致廣、劉君愷、蔡伯晨、鄭明欣,「FC-PBGA 之熱流模擬簡介」,奈米通訊,第十一卷,第四期,第十七至二十一頁,民93年。
    35. N. Stojanovic, J. Yun, E. B. K. Washington, J. M. Berg, M. W. Holtz and H. Temki “Thin-film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-element-model-based Data Analysis,” Journal of Microelectromechanical Systems, Vol. 16, No. 5, 2007.
    36. T. V. Prevenslik, “Heat Transfer in Thin Films,” Third International Conference on Quantum, Nano and Micro Technologies, pp. 73-76, 2009.
    37. Y. Goueffon, C. Mabru, M. Labarrere, L. Arurault , C. Tonon and P. Guigue, “Investigations into the Coefficient of Thermal Expansion of Porous Films Prepared on AA7175 T7351 by Anodizing in Sulphuric Acid Electrolyte,” Surface and Coatings Technology, vol. 205, pp. 2643-2648, 2010.
    38. X. R. Zhang, T.S. Fisher, A. Raman and T.D. Sands, “Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy,” Nanoscale and Microscale Thermophysical Engineering, Vol. 13, No. 4, pp.243-252, 2009.
    39. W. Fang , H.C. Tsai and C.Y. Lo, “Determining Thermal Expansion Coefficients of Thin Films Using Micromachined Cantilevers,” Sensors and Actuators, Vol. 77, pp. 21–27, 1999.
    40. W. Oh and M. Ree, “Anisotropic Thermal Expansion Behavior of Thin Films of Polymethylsilsesquioxane, a Spin-on-glass Dielectric for High-performance Integrated Circuits,” Langmuir, Vol. 20, pp. 6932-6939, 2004.
    41. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    42. D. K. Shukla and V. Parameswaran, “Epoxy Composites with 200 nm Thick Alumina Platelets as Reinforcements,” Journal of Materials Science, vol. 42, No. 15, pp. 5964-5972, 2007.
    43. A. Frey, M. R. Neutra and F. A. Robey, “Peptomer Aluminum Oxide Nanoparticle Conjugates as Systemic and Mucosal Vaccine Candidates: Synthesis and Characterization of a Conjugate Derived from the C4 Domain of HIV-1MN Gp120,” Bioconjugate Chemestry,Vol.8, No. 3 , pp. 424-433, 1997.
    44. J.W. Mclean and T.H. Hughes, “The Reinforcement of Dental Porcelain with Ceramic Oxides.” British Dental Journal, Vol. 116, No. 6, pp.251-267, 1965.
    45. A. Cai, L. Yang, J. Chen, T. Xi, S. Xin and W. Wu, “Thermal Conductivity of Anodic Alumina Film at (220 to 480) K by Laser Flash Technique,” Journal of Chemical & Engineering Data, Vol. 55, No. 11, pp. 4840–4843, 2010.
    46. D.G. Neerinck and T.J. Vink, “ Depth profiling of thin ITO films by grazing incidence X-ray diffraction ”, The Solid Films, Vol. 278, Issues 1–2, pp. 12–17, 1995.
    47. 陳思成、李世欽、林天財,”沉積ITO透明導電膜於可撓式基板上之性質研究。”國立成功大學材料科學及工程學系碩士論文,民國九十二年。
    48. S. Kumar and S. Kasiviswanathan, “Transparent ITO-Mn: ITO Thin-Film Thermocouples,” Ieee Sensors Journal, Vol. 9, No. 7, pp.809-813, 2009.
    49. T. Oswald, E. Baur, S. Brinkmann, K. Oberbach and E. Schmachtenberg, International Plastics Handbook,The Resources for Plastic Eingineers, Hanser Publications, Munich, 2006.
    50. A. K. van der Vegt and L. E. Govaert, Polymeren, Van Keten Tot Kunstof, Gebonden, Netherlands, 2005.
    51. 高騏、莊宴惠“奈米碳管表面改質與複合材料合成之電性和導熱性量測”國立成功大學航太工程學系碩士論文,民國九十七年。
    52. X. Yang, C. Grosjean and Y. Tai, ”Design, Fabrication, and Testing of Micromachined Silicone Rubber Membrane Valves” Journal of Micro Electromechanical Systems, Vol. 8, No. 4, pp.393-402, 1999.
    53. H. Itoh and Y. Yamada, “Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor,” Japanese Journal of Applied Physics, Vol. 45, No. 5B, pp. 4643-4646, 2006.
    54. L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh, ”Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes,” Thermochimica Acta, Vol. 430, No. 1-2, pp.155-165, 2005.
    55. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, Danvers, 2002.
    56. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York, 1984.
    57. ANSYS User’s Manual, ANSYS Inc.
    58. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    59. W. Lee, R. Ji, U. Gosele and K. Nielsch, “Fast Fabrication of Long-Range Ordered Porous Alumina Membranes by Hard Anodization,” Nature Materials, Vol. 5, pp. 741-747, 2006.
    60. T. W. Stinson and J. D. Litster, ”Pretransitional Phenomena in The Isotropic Phase of A Nematic Liquid Crystal,” Physical Review Letters, Vol.25, No.8, pp.503-506. 1970.
    61. G. Ahlers, D. S. Cannell, L. I. Berge and S. Sakurai, ”Thermal Conductivity of The Nematic Liquid Crystal 4-n-penty1-4’cyanobiphenyl,” Physical Review E, Vol.49, No.1, pp 545-553, 1994.
    62. H. Lienhard, A Heat Transfer Textbook, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
    63. F. P. Incropera, D. P. Dewitt, T. I. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer Sixth Edition, John Wiley & Sons, 2007.
    64. T. Aerts, J. B. Jorcin, I.D. Graeve and H. Terryn, “Comparison between The Influence of Applied Electrode and Electrolyte Temperatures on Porous Anodizing of Aluminium,” Electrochimica Acta,Vol. 55, No. 12, pp. 3957-3965, 2010.
    65. C. Xu, H. Wang, P. K. Shen and S. P. Jiang,”Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells,” Aavanced Materials, Vol.19, No. 23, pp. 4256-4259, 2007.
    66. M. T. Wu and M. H. Hon, “Preparation of Nanoporous Anodic Alumina by Anodization of Aluminum,” Department of Materials Science and Engineering, National Cheng Kung University, 2005.
    67. J. Sabbaghzadeh, M. Azizi and M. J. Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser,” Optics & Laser Technology, Vol. 40, pp. 289-296, 2008.
    68. ANSYS Theory Reference. 000855. English Edition. SAS IP, Inc.
    69. W. H. Chen, H. C. Cheng and H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packging Technologies, Vol. 26, pp.222-232, 2003.
    70. G. C. Righini, A. Tajani and A. Cutolo, An Introduction to Optoelectronic Sensor, World Scientific, New York, 2009.
    71. C. K. Lee, G. Y. Wu, C. T .Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee and Y. C. Lin, “A High Performance Doppler Interferometer for Advanced Optical Storage System,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol. 38, No. 3B, pp. 1730-1741, 1999.
    72. 黃智麟,力學與電學耦合問題之含裂縫壓電陶瓷板動態特性研究與實驗量測,國立台灣大學機械工程研究所碩士論文,民94年6月。
    73. J. C. Barbour, J. A. Knapp, D. M. Follstaedt, T. M. Mayer, K. G. Minor and D. L. Linam, “The Mechanical Properties of Alumina Films Formed by Plasma Deposition and by Ion Irradiation of Sapphire,” Nuclear Instruments and Methods in Physics Research B, No.166-167, pp.140-147, 2000.
    74. M. T. A. Saif, S. Zhang, A. Haque and K. J. Hsia, “Effect of Native Al2O3 on The Elastic Response of Nanoscale Al Films,” Acta Materialia, Vol.50, pp. 2779-2786, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE