簡易檢索 / 詳目顯示

研究生: 楊甄寧
Yang, Chen-Ning
論文名稱: 基於人工勢場之自走車避障策略之實現
On the Implementation of Collision Avoidance of a Wheeled-robot using Artificial Potential Field Approach
指導教授: 陳建祥
口試委員: 林明璋
呂有勝
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 人工勢場法避障輪型機器人雷射測距儀
外文關鍵詞: Artificial Potential Field Method, Wheeled robot, Obstacle avoidance, Scanning laser range finder
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用輪型機器人結合雷射測距儀取得的環境資訊,將人工勢場法實現於避障路徑規劃。人工勢場法是將機器人視為一質點,其運動環境視為一虛擬的勢能場,整個區域內的障礙物對機器人產生斥力場,目標點產生引力場,依據人工勢能場的方向及大小變化和最速下降法的步長選取方式,並加入了移動障礙物的判斷,規劃質點從高勢能處向最低勢能處移動的路徑,進行機器人移動速度與方向的控制,使機器人能遠離障礙物向目標點前進。
    置於輪型機器人上的電池除了要供應機器人本身的電源,同時也需要供應筆記型電腦、雷射測距儀等周邊實驗器材的電源,耗電量非常大,因此電池的充電問題是一大考量,本文亦考慮返航充電之功能,經過定位計算,回到指定位置,透過設計的充電機構導正進行充電。
    本文針對人工勢場法應用於輪型機器人運動的侷限性與問題提出改善,在實驗中,輪型機器人能夠判斷障礙物的動靜,並依照人工勢場法分析的合力來避開障礙物,向目標點前進,並以U字型凹槽(充電設備放置處)進行校正對準動作,返回充電設備自行充電。


    The objective of this thesis is performing path planning to avoid obstacles by Artificial Potential Field Method. The experimental system consists of a wheeled robot, a scanning laser range finder, and a notebook. In Artificial Potential Field Method, the mobile robot is viewed as a particle, and the environment as a virtual potential field. In the moving area, obstacles produce repulsive force, and the target produces attractive force to the mobile robot. According to the environment information obtaining from scanning data, we can determine whether the obstacle is moving or not, and also calculate the resultant force of all obstacles in setting range and the target by Artificial Potential Field Method. By analyzing the resultant force calculated by Artificial Potential Field Method and choosing step size by Steepest Descend Method, we can control the motion of the robot so that the mobile robot can avoid obstacles and moving toward the target.
    In this thesis, the robot can determine the status of obstacles and following the motion strategy safely avoid obstacles, and move toward the target. After reaching the target, the robot moves toward the preset U-shaped object (charger place) by alignment and being recharged automatically.

    摘要 第一章 緒論 1.1研究動機 1.2文獻回顧 1.3本文結構 第二章 問題描述 2.1人工勢場法之原理介紹 2.2人工勢場法的侷限性與改善方法 2.3運用上可能遇到的問題與解決方法 第三章 實施方法 3.1適用環境描述 3.2雷射測距儀系統設計 3.3輪型自走車運動控制策略 第四章 實驗系統架構 4.1系統架構 4.2軟體介紹 第五章 實驗結果與討論 5.1實驗介紹 5.2實驗一 靜止障礙物避障測試 5.3實驗二 移動障礙物避障判斷測試 5.4實驗三 避障測試 5.5實驗四 定位校正功能測試 5.6實驗五 整合實驗 5.7結果與討論 第六章 本文貢獻與與未來發展與建議 6.1本文貢獻 6.2未來發展與建議 參考文獻 附錄 附錄A P3-DX詳細規格 附錄B URG-LX04詳細規格

    [1] http://rtc.nagoya.riken.jp/RI-MAN/index_us.html居家照護機器人
    [2] http://www.irobot.com/us/ 清掃型機器人
    [3] http://www.pmc.org.tw/ 導覽互動型機器人
    [4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.
    [5] Y. Koren and J. Borenstein, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1398-1404, 1991.
    [6] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 5, pp. 615-620, 2000.
    [7] S. S. Ge and Y. J. Cui, “Dynamic Motion Planning for Mobile Robots Using Potential Field Method,” Autonomous Robots, Vol. 13, pp. 207-222, 2002.
    [8] 蕭義麟,具眼在手視覺系統之輪式移動型機械手臂之導航與避障,國立成功大學機械工程學系碩士論文,中華民國九十四年七月。
    [9] L. Tang, S. Dian, G. Gu, K. Zhou, S. Wang, X. Feng, “A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robot,” Computer Science and Information Technology (ICCSIT), IEEE International Conference on , Vol. 9, pp. 633-637, 2010.
    [10] Q. Li, L. Wang, B. Chen, Z. Zhou, “An Improved Artificial Potential Field Method for Solving Local Minimum Problem,” IEEE International Conference on Control and Information Processing, Vol. 1, pp. 420-424, 2011.
    [11] C. Liu, H.A. Jr. Marcelo, K. Hariharan, S.Y. Lim, “Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 983-988, 2000.
    [12] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments Using Velocity Obstacle,” International Journal of Robotics Research, Vol. 17, No. 7, pp. 760-772, 1998.
    [13] E. Masehian, Y. Katebi, “Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target,” International Journal of Mechanical System Science and Engineering, Vol. 1, No. 1, pp. 20-25, 2007.
    [14] G. Struck, J. Geisler, F. Laubenstein, H.-H. Nagel, and G. Siegle, “Multi-Camera Vision-Based Autonmous Maneuvering at Road Intersections”, in IEEE Proceedings of the Intelligent Vehicle Symposium, Paris, France, pp. 189-194, 1994.
    [15] S. Tsugawa, “Vision-Based Vehicles in Japan: Machine Vision Systems and Driving Control Systems,” in IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, pp. 398-405, 1994.
    [16] C. Ye and J. Borenstein, “Characterization of a 2D Laser Scanner for Mobile Robot Obstacle Negotiation,” IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2512-2518, 2002.
    [17] R. Vázquez-Martín, P. Núňez, A. Bandera, F Sandoval, “Curvature-Based Environment Description for Robot Navigation Using Laser Range Sensors,” Sensors, Vol. 9, No. 8, pp. 5894-5918,2009
    [18] 鍾鎮謙,運用雷射測距儀之機器人定位設計,國立交通大學電機與控制工程學系碩士論文,中華民國九十五年九月。
    [19] J. R. Andrews and N. Hogan, “Impedance Control as a Framework for Implementing Obstacle Avoidance in a Manipulator,” Control of Manufacturing Processes and Robotics Systems, pp.243-251, 1983.
    [20] R. B. Tilove, “Local Obstacle Avoidance for Mobile Robots Based on the Method of Artificial Potentials,” General Motors Research Laboratories, Research Publication GMR-6650, 1989.
    [21] M. K. Zhang and L. S. Li, “A Method for Solving the Local Minimization Problem of Artificial Potential Field,” Computer Technology and Development, Vol. 17, No. 5, pp. 137-139, 2007.
    [22] F. Mokhtarian and A. Mackworth, “Scale-Based Description and Recognition of Planar Curves andTwo-dimensional Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 1, pp.34-43, 1986.
    [23] 溫智凱,結合射頻辨識與二維雷射尋標儀於輪型機器人之追蹤與避障,國立清華大學動力機械工程學系碩士論文,中華民國一百零一年七月。
    [24] 林子揚,雷射測距儀應用於輪型機器人自動導航,國立中央大學電機工程學系碩士論文,中華民國九十九年六月。
    [25] http://www.hokuyo-aut.jp/ 雷射測距儀URG-04LX參考資料
    [26] J. E. Dennis, R. B. Schnabel, “Numerical Methods for Unconstrained Optimization, ” Prentice Hall, 1987.
    [27] 辜炳翰,輪型機器人結合三維影像之自動追蹤與運動控制,國立清華大學動力機械工程學系碩士論文,中華民國九十七年七月。
    [28] http://robots.mobilerobots.com/ Pioneer 3 Operations Manual

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE