簡易檢索 / 詳目顯示

研究生: 黃詩元
Huang, Shih-Yuan
論文名稱: 利用非重疊的反轉進行近似字串的比對
Approximate String Matching under Non-Overlapping Inversions
指導教授: 盧錦隆
Lu, Chin Lung
口試委員: 李家同
Richard Chia-Tung Lee
唐傳義
Chuan Yi Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 23
中文關鍵詞: 近似字串比對非重疊反轉動態規劃
外文關鍵詞: approximate string matching, non-overlapping inversions, dynamic programming
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們介紹並研究一個考量非重疊反轉距離(Non-overlapping Inversion Distance)的近似字串比對問題(Approximate String Matching Problem)。給一個內文t、樣版p和一個非負整數k,這個問題的目標是要去找出內文t中所有子字串的位置使得每一個子字串最多使用k個非重疊反轉(Non-overlapping Inversions)轉換成樣版p。首先,我們利用動態規劃(Dynamic Programming)的方法設計出一個演算法可以在O(nm^2 )時間且O(m^2)空間內解決這個問題,其中n是內文的長度,而m是樣版的長度。接著,我們利用一個有效率的篩選策略(Filtering Strategy)提出另一個演算法,這個演算法的時間與空間複雜度皆與我們提出的第一個演算法相同。


    In this thesis, we introduce and study the approximate string matching problem under non-overlapping inversion distance. Given a text t, a pattern p and a non-negative integer k, the goal of the problem is to find all locations in the text t that match the pattern p with at most k non-overlapping inversions. First, we use the dynamic programming approach to design an algorithm that solves this problem in O(nm^2 ) time and O(m^2) space, where n is the length of the text and m is the length of the pattern. Next, we present another algorithm based on an efficient filtering strategy that has the same worst-case time and space complexities as the first algorithm.

    中文摘要 I Abstract II Acknowledgement IIIII Contents IIV List of figures V Chapter 1 Introduction 1 Chapter 2 Preliminaries 4 Chapter 3 A Dynamic Programming Algorithm 8 Chapter 4 A Filtering Algorithm 15 Chapter 5 Conclusions 21 References 22

    1.Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141, 163-173 (1995)
    2.BaezaYates, R., Navarro, G.: Faster approximate string matching. Algorithmica 23, 127-158 (1999)
    3.Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-overlapping inversions. Theoretical Computer Science 483, 85-95 (2013)
    4.Cantone, D., Faro, S., Giaquinta, E.: Approximate string matching allowing for inver-sions and translocations. Proceedings of the Prague Stringology Conference 2010, pp. 37-51 (2010)
    5.Cantone, D., Faro, S., Giaquinta, E.: Text searching allowing for inversions and trans-locations of factors. Discrete Applied Mathematics 163, 247-257 (2014)
    6.Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm. SI-AM Journal on Computing 31, 1761-1782 (2002)
    7.Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge University Press, Cambridge, New York (2007)
    8.Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of genome re-arrangements. MIT Press, Cambridge, Massachusetts (2009)
    9.Grabowski, S., Faro, S., Giaquinta, E.: String matching with inversions and transloca-tions in linear average time (most of the time). Information Processing Letters 111, 516-520 (2011)
    10.Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and com-putational biology. Cambridge University Press, Cambridge England, New York (1997)
    11.Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching al-gorithms. Software-Practice & Experience 26, 1439-1458 (1996)
    12.Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33, 31-88 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE