研究生: |
賴柏倫 Lai, Bo-Lun |
---|---|
論文名稱: |
質子、重粒子與加速器硼中子捕獲治療設施的輻射場特性與屏蔽研究 Radiation Field Characterization and Shielding Studies on Proton, Carbon-ion, and Accelerator-Based Boron Neutron Capture Therapy Facilities |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
張似瑮
Chang, Szu-Li 薛燕婉 Liu, Hsueh Yen-Wan 林威廷 Lin, Uei-Tyng 劉鴻鳴 Liu, Hong-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 198 |
中文關鍵詞: | 質子與重粒子治療 、加速器硼中子捕獲治療設施 、屏蔽分析 、蒙地卡羅模擬 、簡化法 、物質活化 |
外文關鍵詞: | Proton and heavy-ion accelerators, Accelerator-based boron neutron capture therapy facility, Shielding analysis, Monte Carlo simulation, Simplified methods, Material activation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於點射源視線模型的簡化法具有計算快速、簡單、直覺與易驗證的優點,在實務的屏蔽計算中最受歡迎。正確使用簡化法的關鍵是基於問題的射束/靶/屏蔽描述在文獻中挑選合適的射源項與衰減長度之屏蔽參數,或為問題建立特殊的屏蔽參數。然而,在質子治療加速器的屏蔽參數文獻中,本研究發現有許多彼此不太一致的屏蔽參數,造成使用者選擇的困難與不確定性;而重粒子治療加速器的屏蔽參數則是很不完整的,常常造成使用者只能選擇近似的屏蔽參數。若考慮自行建立屏蔽參數,則會面臨許多計算難題,如中子深穿透計算的誤差。另外,中子截面的選擇也是關鍵,尤其是在截面隨能量變化大的共振區。
有鑑於此,本研究採用經驗證可靠的射源與中子深穿透計算模型,考慮醫用加速器設施常用的射束/靶/屏蔽組合,有系統地擬合一系列以連續能量截面為主的蒙地卡羅法進行深穿透計算得到的劑量衰減曲線,以便分別得到適用於質子、重粒子(12C)治療加速器和加速器硼中子捕獲治療(AB-BNCT)設施的射源項與衰減長度等屏蔽參數,這應該是目前文獻上針對這些類型的加速器治療設施最完整可靠的屏蔽參數資料庫。在屏蔽參數應用的實例分析上,本研究考慮簡單幾何的單層與雙層屏蔽應用,以及常見質子、重粒子(12C)治療設施的屏蔽配置,採用簡化法與準確但複雜耗時的蒙地卡羅模擬相比,證明本研究所建立的屏蔽參數可適用於這些加速器設施的初期規劃與屏蔽分析。
關於AB-BNCT設施,本研究採用五種方法計算設施周邊的劑量率,其中,在蒙地卡羅法的計算中,以人造中子射源作為ADVANTG/MCNP5的射源項的計算效率最高。針對簡化法的使用,本研究建議將BSA納入射源項與衰減長度等屏蔽參數的產生,測試結果證明它能為設施的初期規劃提供一個快速且實用的估計。另外,AB-BNCT設施的實現需要一座電流輸出高達1 mA的質子加速器,它的運轉將伴隨大量二次中子,因此由中子引發的活化現象必須正視。基於一系列的FLUKA計算,本研究為此設施進行初步大範圍的物質活化分析,結果有利於未來優化細部設計和放射性廢棄物的管理。
關鍵字:質子與重粒子治療;加速器硼中子捕獲治療設施;屏蔽分析;蒙地卡羅模擬;簡化法;物質活化
Monte Carlo simulations are generally considered the most accurate method for complex accelerator shielding analysis. Simplified models based on a point-source line-of-sight approximation are often preferable in practice because they are intuitive and easy to use. A set of shielding data, including source terms and attenuation lengths for several common targets and shielding materials were generated by performing continuous-energy MCNP Monte Carlo simulations for 100–300 MeV protons and carbon ions with energies of 400 MeV, 430 MeV, and 800 MeV. Possible applications and a proper use of the data set were demonstrated through several simplified and practical cases, in which shielding analyses on typical proton and heavy-ion treatment rooms were conducted. A thorough and consistent comparison between the predictions of our point-source line-of-sight model and those obtained by Monte Carlo simulations for a 360° dose distribution around the room perimeter showed that the data set can yield fairly accurate or conservative estimates for the transmitted doses, except for those near the maze exit. In addition, our studies demonstrated that appropriate coupling between the generated source term and empirical formulae for radiation streaming can be used to predict a reasonable dose distribution along the maze. These case studies proved the effectiveness and advantage of applying the data set to a quick shielding design and dose evaluation for proton and heavy-ion accelerators.
This study also addressed methods that can be used in shielding analyses for a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility, which included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. Several calculation methods were used to investigate this shielding problem, including analog and biased Monte Carlo simulations as well as a similar simplified model based on the specific BSA design. The advantages and disadvantages of these methods were discussed. In addition, material activation assessment of the proposed facility was performed using the FLUKA Monte Carlo code to quantify the magnitude of the problem in terms of the isotope inventories, induced activities, and residual dose rates. The predicted results were compared with the corresponding regulatory limits. Moreover, the effectiveness of various measures to reduce the impact of material activation was demonstrated.
Keywords: Proton and heavy-ion accelerators; Accelerator-based boron neutron capture therapy facility; Shielding analysis; Monte Carlo simulation; Simplified methods; Material activation
1. 衛生福利部, 106年國人死因統計結果 [online]. Available at: https://www.mohw.gov.tw/cp-16-41794-1.html (accessed Jun 15, 2018).
2. Particle therapy co-operative group, “Particle therapy centers and patient statistics” [online]. Available at: https://www.ptcog.ch/ (accessed Mar 18, 2018).
3. International atomic energy agency, “Current status of neutron capture therapy”. IAEA-TECDOC-1223, Vienna, 2001.
4. Y.W.H. Liu, T.T. Huang, S.H. Jiang, H.M. Liu, “Renovation of epithermal neutron beam for BNCT at THOR”. Applied Radiation and Isotopes 61, 1039–1043 (2004).
5. L.W. Wang, S.J. Wang, P.Y. Chu, C.Y. Ho, S.H. Jiang, Y.H. Liu, Y.W.H. Liu, H.M. Liu, J.J. Peir, F.I. Chou, S.H. Yen, T.L. Lee, C.W. Chang, C.S. Liu, Y.W. Chen, K. Ono, “BNCT for locally recurrent head and neck cancer: Preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor”. Applied Radiation and Isotopes 69, 1803–1806 (2011).
6. National council on radiation protection and measurements, “Radiation protection for particle accelerator facilities”. NCRP Report No. 144. Mayland, US, 2003.
7. International atomic energy agency, “Radiological safety aspects of the operation of proton accelerators”. Technical Report No. 283. Vienna, 1988.
8. J.D. Cossairt, “Radiation physics for personnel and environmental protection”. Fermilab Report TM-1834 Revision 15, 2016.
9. Particle therapy co-operative group, “Shielding design and radiation safety of charged particle therapy facilities”. PTCOG Report 1, 2010.
10. S.W. Mosher, S.R. Johnson, A.M. Bevill, A.M. Ibrahim, C.R. Daily, T.M. Evans, J.C. Wagner, J.O. Johnson and R.E. Grove, “ADVANTG-an automated variance reduction parameter generator”. Oak Ridge National Laboratory, US, 2015.
11. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, J. Hendricks, H. G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, “Initial MCNP6 release overview”. Nuclear Technology, 180, 298–315 (2012).
12. F. Wasastjerna, “Using MCNP for fusion neutronics”, VTT-PUBS–699, Finland, 2008.
13. W.B. Howard J.C. Yanch, “Shielding design and dose assessment for accelerator based neutron capture therapy”. Health Physics 68, 723–730 (1995).
14. J.F. Evans and T.E. Blue, “Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT”. Health Physics 71, 692–699 (1996).
15. S.V. Costes, R.J. Donahue J. Vujic, “Radiation shielding and patient organ dose study for an accelerator-based BNCT facility at LBNL”. LBNL–39450, US, 1996.
16. B.J. Moyer, “Evaluation of shielding required for the improved Bevatron”. Lawrence Radiation Laboratory Report UCRL–9769, 1961.
17. K. Tesch, “A simple estimation of the lateral shielding for proton accelerators in the energy range 50 to 1000 MeV”. Radiation Protection Dosimetry 11, 165–172 (1985).
18. S. Agosteo, A. Fasso`, A. Ferrari, P.R. Sala, M. Silari, P. Tabarelli de Fatis, “Double differential distribution and attenuation in concrete for neutrons produced by 100‐400 MeV protons on iron and tissue target”. Nuclear Instruments and Methods in Physics Research Section B 114, 70–80 (1996).
19. S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, “Shielding data for 100–250 MeV proton accelerators: Double differential neutron distributions and attenuation in concrete”. Nuclear Instruments and Methods in Physics Research Section B 265, 581–598 (2007).
20. S. Agosteo, T. Nakamura, M. Silari, Z. Zajacova, “Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets”. Nuclear Instruments and Methods in Physics Research Section B 217, 221–236 (2004).
21. S. Agosteo, M. Magistris, A. Mereghetti, M. Silari, Z. Zajacova, “Shielding data for 100‐250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields”. Nuclear Instruments and Methods in Physics Research Section B 266, 3406–3416 (2008).
22. R.J. Sheu, Y.F. Chen, U.T. Lin, S.H. Jiang, “Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators”. Nuclear Instruments and Methods in Physics Research Section B 280, 10–17 (2012).
23. S. Agosteo, “Radiation protection at medical accelerators”. Radiation Protection Dosimetry 96, 393–406 (2001).
24. T. Kurosawa, N. Nakao, T. Nakamura, Y. Uwamino, T. Shibata, N. Nakanishi, A. Fukumura, K. Murakami, “Measurements of Secondary Neutrons Produced from Thick Targets Bombarded by High-Energy Helium and Carbon Ions”. Nuclear Science and Engineering 132, 30–57 (1999).
25. T. Kurosawa, N. Nakao, T. Nakamura, Y. Uwamino, T. Shibata, A. Fukumura K. Murakami, “Measurements of secondary neutrons produced from thick targets bombarded by high energy neon ions”, Journal of nuclear science and technology 36, 41–53 (1999).
26. T. Kurosawa, N. Nakao, T. Nakamura, H. Iwase, H. Sato, Y. Uwamino, A. Fukumura, “Neutron yields from thick C, Al, Cu, and Pb targets bombarded by 400 MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si ions”. Physical Review C 62 Third series, No. 4 (2000).
27. S. Agosteo, A. Mereghetti, E. Sagia, M. Silari, “Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete”. Nuclear Instruments and Methods in Physics Research Section B 319, 154–167 (2014).
28. Y. Iwamoto, R.M. Ronningen, “Attenuation of ambient dose equivalent from neutrons by thick concrete, cast iron and composite shields for high energy proton, 3He, 48Ca and 238U ions on Cu targets for shielding design”. Nuclear Instruments and Methods in Physics Research Section B 269, 353–363 (2011).
29. W.D. Newhause, U. Titt, D. Dexheimer, X. Yan, S. Nill, “Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center”. Nuclear Instruments and Methods in Physics Research A 476, 80–84 (2002).
30. S. Agosteo, “Radiation protection constraints for use of proton and ion accelerators in medicine”. Radiation Protection Dosimetry 137, 167–186 (2009).
31. A.B. Phillips, D.E. Prull, R.A. Ristinen, J. J. Kraushaar, “Residual radioactivity in a cyclotron and its surroundings”. Health Physics 51, 337–342 (1986).
32. K. Kimura, T. Ishikawa, M. Kinno, A. Yamadera, T. Nakamura, “Residual long-lived radioactivity distribution in the inner concrete wall of a cyclotron vault”. Health Physics 67, 621–631 (1994).
33. I. Yamaguchi, K.I. Kimura, T. Fujibuchi, Y. Takahashi, K. Saito, H. Otake. “Radiation safety management of residual long-lived radioactivity distributed in a inner concrete wall of a medical cyclotron room”. Radiation Protection Dosimetry 146, 167–169 (2011).
34. T. Fujibuchi, A. Nohtomi, S. Baba, M. Sasaki, I. Komiya, Y. Umedzu, H. Honda, “Distribution of residual long-lived radioactivity in the inner concrete walls of a compact medical cyclotron vault room”. Annals of Nuclear Medicine 29, 84–90 (2015).
35. A. Infantino, L. Valtieri, G. Cicoria, D. Pancaldi, D. Mostacci, M. Marengo, “Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility”. Physica Medica 31, 991–996 (2015).
36. R. Versaci, A. Mereghetti, M. Silari, R. Chamizo, “Studies for a H0/H– dump for the CERN Linac4: Energy deposition, induced radioactivity and BLM signal”. in: Proceedings of Shielding Aspects of Accelerators, Targets and Irradiation Facilities, SATIF–10, Geneva, Switzerland, 2010, 117.
37. F. Cerutti, N. Charitonidis, M. Silari, “Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons”. in: Proceedings of Shielding Aspects of Accelerators, Targets and Irradiation Facilities, SATIF–10, Geneva, Switzerland, 2010, 139.
38. J. Blaha, F.P. La Torre, M. Silari, J. Vollaire, “Long-term residual radioactivity in an intermediate-energy proton linac”. Nuclear Instruments and Methods in Physics Research A 753, 61–71 (2014).
39. D. Ene, M. Brandin, M. Eshraqi, M. Lindroos, S. Peggs, H. Hahn, “Radiation protection studies for ESS superconducting linear accelerator”. Progress in Nuclear Science and Technology 2, 382–388 (2011).
40. A. Ferrari, J. Biarrotte, L. Perrot, H. Saugnac, D. VandePlassche, “Shielding and activation studies for the design of the MYRRHA proton beamline”. in: Proceedings of Shielding Aspects of Accelerators, Targets and Irradiation Facilities, SATIF–11, Tsukuba, Japan, 2012, 13–27.
41. H. Tanaka, Y. Sakurai, M. Suzuki, S. Masunaga, Y. Kinashi, G. Kashino, Y. Liu, T. Mitsumoto, S. Yajima, H. Tsutsui, A. Maruhashi, K. Ono, “Characteristics comparison between a Cyclotron-Based neutron source and KUR-HWNIF for Boron Neutron Capture Therapy”. Nuclear Instruments and Methods in Physics Research Section B 267, 1970–1977 (2009).
42. M. Imoto, H. Tanaka, K. Fujita, T. Mitsumoto, K. Ono, A. Maruhashi, Y. Sakurai, “Evaluation for activities of component of Cyclotron-Based Epithermal Neutron Source (C-BENS) and the surface of concrete wall in irradiation room”. Applied Radiation and Isotopes 69, 1646–1648 (2011).
43. M. Maiti, M. Nandy, S.N. Roy, P.K. Sarkar, “Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements”. Nuclear Instruments and Methods in Physics Research B 226, 585–594 (2004).
44. W.K. Hagan, B.L. Colborn, T.W. Armstrong, “Radiation Shielding Calculations for a 70- to 250-MeV Proton Therapy Facility”. Nuclear Science and Engineering 98, 272–278 (1988).
45. J.V. Siebers, P.M. DeLuca Jr., D.W. Pearson, “Shielding Calculations for 230–MeV Protons Using the LAHET Code System”. Nuclear Science and Engineering 122 258–266 (1996).
46. H.B. Knowles, J.L. Orthel, B.W. Hill, “Shielding and activation study for proton medical accelerators”, in: Proceedings of the 1993 Particle Accelerator Conference, Washington DC, IEEE (1993), 1762, May 17–20, 1993.
47. S. Teichmann, in: Proc. of the AEN/NEA Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities, Pohang Accelerator Laboratory, NEA/OECD (2006) (in press), 22–24 May 2006.
48. T. Kato, T. Nakamura, “Analytical method for calculating neutron bulk shielding in a medium-energy accelerator facility”. Nuclear Instruments and Methods in Physics Research B 174, 482–490 (2001).
49. K. Tesch, “The attenuation of the neutron dose equivalent in a labyrinth through an accelerator shield”. Particle accelerators 12, 169–175 (1982).
50. S. Yang, “The beam shaping assembly and collimator design of epithermal neutron beam and in-phantom dose analysis for AB-BNCT”. National Tsing Hua University, Master Thesis (2014).
51. Y.W.H. Liu and J.F. You, ROC Patent No. TW201515011A (2015).
52. European Commission on Nuclear Safety and the Environment, “Evaluation of the radiological and economic consequences of decommissioning particle accelerators”. Report EUR 19151 (1999).
53. X-5 Monte Carlo Team, “MCNP - Version 5, Vol. I: Overview and Theory”. LA-UR-03-1987 (2003).
54. D.B. Pelowitz, Ed., “MCNPX user manual Version 2.7.0”. LA-CP-11-00438 (2011).
55. L.M. Kerby, S.G. Mashnik, A.J. Sierk, “Comparison of expanded pre-equilibrium cem model with cem03.03 and experimental data, FY2013”. LA-UR-13-21828 (2013).
56. T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis, “The FLUKA Code: Developments and challenges for high energy and medical applications”. Nuclear Data Sheets 120, 211–214 (2014).
57. A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, "FLUKA: a multi-particle transport code". CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.
58. M.M. Meier, C.A. Goulding, G.L. Morgan and J.L. Ullmann, “Neutron yields from stopping- and near-stopping-length targets for 256–MeV protons”. Nuclear Science and Engineering 104, 339–363 (1990).
59. R.J. McConn Jr, C.J. Gesh, R.T. Pagh, R.A. Rucker, R.G. Williams III. “Compendium of Material Composition Data for Radiation Transport Modelling”. Pacific Northwest National Laboratory, PNNL-15870 Rev. 1 (2011).
60. International Commission on Radiological Protection, “Conversion coefficients for use in radiological protection against external radiation”. ICRP Publication 74. Ann. ICRP 26 (3–4) (1996).
61. M. Pelliccioni, “Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code”. Radiation Protection Dosimetry 88, 279–297 (2000).
62. T. Nakamura L. Heilbronn, Handbook on Secondary Particle Production and Transport by High-energy Heavy Ions:(with CD-ROM) (World Scientific, 2006).
63. F. M. Waterman, F. T. Kuchnir, L. S. Skaggs, R. T. Kouzes, and W. H. Moore, “Neutron spectra from 35 and 46 MeV protons, 16 and 28 MeV deuterons, and 44 MeV 3He Ions on thick beryllium”. Medical Physics 6, 432–435 (1979).
64. International Commission on Radiological Protection, “Nuclear decay data for dosimetric calculations”. ICRP Publication 107. Ann. ICRP 38 (3) (2008).
65. A.J. Koning, D. Rochman, TENDL-2009: “TALYS-based Evaluated Nuclear Data Library” [online]. Available at: http://www.talys.eu/tendl-2009/. (accessed Mar 18, 2018).
66. National Institute of Standards and Technology, PSTAR [online]. Available at: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html. (accessed Mar 18, 2018).
67. Y.C. Hsu, “Accelerator induced neutron yields and material activation”. National Tsing Hua University, Master Thesis (2014).
68. A. HOLM, C. Søndergaard, E. Klinkby, O. Nørrevang, H. Nystrôm, L. Præstegaard, “Evaluation of the radiation protection barriers at the Danish Centre for Particle Therapy”. 55th Annual Conference of the Particle Therapy Co-operative Group, Prague, Czech Republic (2016).
69. J. Meissner, “Radiation shielding”, 55th Annual Conference of the Particle Therapy Co-operative Group, Prague, Czech Republic (2016).
70. Design and Shielding of Radiotherapy Treatment Facilities, 2nd Edition, IOP Publishing, Bristol, UK (2017). R.L. Maughan, M.J. Hardy, M.J. Taylor, J. Reay, R. Amos, Chapter 11 Radiation shielding and safety for particle therapy facilities, 1-42.