簡易檢索 / 詳目顯示

研究生: 林哲宇
Lin, Jhe-Yu
論文名稱: 鋁誘發非晶矽結晶之反應探討
The Reaction of Aluminum-Induced Amorphous Silicon Crystallization
指導教授: 蔡哲正
Tsai, Cho-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 多晶矽鋁誘發薄膜氧化層
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於許多電子元件及太陽能電池而言,在玻璃基板上使用簡單製程製造出多晶矽,乃是相當有吸引力的低成本目標。利用金屬誘發非晶矽結晶擁有這樣的潛力。使用鋁誘發時,可在較低溫度下退火,獲得大晶粒的多晶矽,且由於鋁-矽不具有穩定化合物,所以能夠產生連續的多晶矽薄膜,鋁誘發的反應又稱為鋁誘發薄膜互換反應。
    本實驗在一般蓋玻片的玻璃基板上先後鍍上50nm的鋁及60nm的非晶矽,兩層薄膜間的介面不具有氧化鋁層,以200∼300℃區間溫度進行後,在不同退火溫度及退火時間下取出試片,以光學顯微鏡觀察玻璃與鋁介面出現黑色區域的覆蓋率,即為多晶矽的置換率。再將各覆蓋率進行Avrami’s equation擬合之後,得到的n值誤差過大,無法以Avrami’s equation解釋此反應機制。在不同溫度的S曲線,取反應由0%∼50%的時間,求得整體活化能約為0.13eV,較文獻中所得的值小了許多,影響活化能差異的最大因素可能是介面的氧化鋁層。另以反應20%∼80%所需的時間,求得反應活化能約為0.17eV,即便以k值以Arrhenius法則來計算活化能,得到的活化能數值依然相當低,約為0.15eV。
    觀察置換反應中,成核點的數量隨時間的改變無法得到飽和的趨勢,乃是受限於本實驗觀察的方式;當非晶矽薄膜厚度較薄時,觀察到的晶粒有更為明顯的樹突狀結構,可能因殘留的鋁所致,也影響到覆蓋率,且有機會得到更大的晶粒。


    摘要..............................................I Abstract..........................................II 誌謝..............................................III 目錄..............................................IV 圖目錄............................................V 第一章:緒論......................................1 1-1.前言..........................................1 1-1-1.簡介........................................1 1-1-2.太陽能電池的種類概述........................2 1-1-3.多晶矽製程的比較............................3 1-2.研究動機......................................4 1-3.文獻回顧......................................5 1-3-1.鋁誘發非晶矽結晶............................5 1-3-2.以熱力學解釋機制............................7 1-3-3.觀察置換比例................................10 1-3-4.膜厚比例的影響..............................10 1-3-5.Avrami’s equation的擬合....................12 1-3-6.中斷反應的影響..............................13 1-3-7.置換反應的不同階段..........................15 1-3-8.成核數量與退火時間的關係....................16 第二章:實驗方法..................................24 2-1.實驗流程......................................24 2-2.試片..........................................25 2-2-1.試片選擇....................................25 2-2-2.試片準備....................................25 2-2-3.試片清洗....................................25 2-2-4.鍍膜........................................26 2-2-5.退火........................................26 2-3.量測方法......................................28 2-3-1.光學顯微鏡..................................28 2-3-2.XRD .........................................28 第三章:結果與討論................................33 3-1.置換比例隨退火時間之變化......................33 3-2.由XRD分析確定出現結晶矽.......................34 3-3.以不同溫度擬合S曲線...........................34 3-4.介面性質造成置換反應的影響....................37 3-5. n值受介面之影響..............................40 3-6.反應活化能....................................41 3-7.成核點的變化..................................43 3-8.覆蓋率隨膜厚增厚的改變........................44 3-9.鋁-矽膜厚比例對晶粒尺寸的影響.................45 第四章:結論......................................58 文獻回顧..........................................60

    1. Brotherton, S.D., Ayres, J. R., Edwards, M. J., Fisher, C. A., Glaister, C., Gowers, J. P., McCulloch, D. J., and Trainor, M., "Laser crystallised poly-Si TFTs for AMLCDs." Thin Solid Films, 1999. 337(1-2): p. 188-195.
    2. Spinella, C., S. Lombardo, and F. Priolo, "Crystal grain nucleation in amorphous silicon". Journal of Applied Physics, 1998. 84(10): p. 5383-5414.
    3. Pereira, L., Martins, R. M. S., Schell, N., Fortunato, E., and Martins, R., "Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer." Thin Solid Films, 2006. : p. 275-279.
    4. Csik, A., Langer, G. A., Erdelyi, G., Beke, D. L., Erdelyi, Z., and Vad, K., "Investigation of Sb diffusion in amorphous silicon." Vacuum, 2007. : p. 257-260.
    5. Kim, H.Y., Kang, Y. S., Lee, P. S., and Lee, J. Y., "Low-temperature crystallization of amorphous silicon films in contact with palladium by hydrogen plasma heating." Thin Solid Films, 2002. 402(1-2): p. 296-301.
    6. Nast, O. and S.R. Wenham, "Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization." Journal of Applied Physics, 2000. 88(1): p. 124-132.
    7. Nast, O. and A.J. Hartmann, "Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon." Journal of Applied Physics, 2000. 88(2): p. 716-724.
    8. Gall, S., Muske, M., Sieber, I., Nast, O., and Fuhs, W., "Aluminum-induced crystallization of amorphous silicon." Journal of Non-Crystalline Solids, 2002. : p. 741-745.
    9. Gong, S.F., Hentzell, H. T. G., Robertsson, A. E., Hultman, L., Hornstrom, S. E., and Radnoczi, G., "Al-doped and Sb- doped polycrystalline silicon obtained by means of metal-induced crystallization." Journal of Applied Physics, 1987. 62(9): p. 3726-3732.
    10. He, D., J.Y. Wang, and E.J. Mittemeijer, "Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: microstructural and thermodynamic analysis of layer exchange." Applied Physics a-Materials Science & Processing, 2005. 80(3): p. 501-509.
    11. Lopez, G.A., E.J. Mittemeijer, and B.B. Straumal, "Grain boundary wetting by a solid phase; microstructural development in a Zn-5 wt% Al alloy." Acta Materialia, 2004. 52(15): p. 4537-4545.
    12. Wang, Z.M., Wang, J. Y., Jeurgens, L. P. H., and Mittemeijer, E. J., "Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers." Physical Review B, 2008. 77(4): p. 15.
    13. Widenborg, P.I. and A.G. Aberle, "Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates." Journal of Crystal Growth, 2002. 242(3-4): p. 270-282.
    14. Ekanayake, G., T. Quinn, and H.S. Reehal, "Large-grained poly-silicon thin films by aluminium-induced crystallisation of microcrystalline silicon." Journal of Crystal Growth, 2006. 293(2): p. 351-358.
    15. Schneider, J., Schneider, A., Sarikov, A., Klein, J., Muske, M., Gall, S., and Fuhs, W., "Aluminum-induced crystallization: Nucleation and growth process." Journal of Non-Crystalline Solids, 2006. : p. 972-975.
    16. Stoger-Pollach, M., Walter, T., Muske, M., Gall, S., and Schattschneider, P., "Phase transformations of an alumina membrane and its influence on silicon nucleation during the aluminium induced layer exchange." Thin Solid Films, 2007. 515(7-8): p. 3740-3744.
    17. Antesberger, T., C. Jaeger, and M. Stutzmann. "Ultra-thin polycrystalline Si layers on glass prepared by aluminum-induced layer exchange." Journal of Non-Crystalline Solids, 2008. : p. 2324-2328.
    18. A. Hiraki, “Low temperature reactions at Si/metal interface; what is going on at the interface?” Surf. Sci. Rep. 3, 357, 1984. P. 357-412.
    19. J. W. Christian, “The Theory of Transformations in Metals and Alloys Part I”, (PERGAMON, 2002). P.538-P.546
    20. He, D., J.Y. Wang, and E.J. Mittemeijer, “Origins of interdiffusion, crystallization and layer exchange in crystalline Al/amorphous Si layer systems.” Applied Surface Science, 2006. : p. 3740-3744.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE