研究生: |
林琨筌 Lin, Kun-Chuan |
---|---|
論文名稱: |
數學臆測教學提升國小資優生 數學創思力之行動研究 An Action Research of Mathematical Conjecturing Teaching to Promote Mathematical Creativity for Primary Gifted Children |
指導教授: |
林碧珍
Lin, Pi-Jen |
口試委員: |
蔡文煥
黃澤洋 |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 數學創思力 、數學臆測教學 、國小資優生 |
外文關鍵詞: | mathematical creativity, mathematical conjecturing teaching, primary gifted students |
相關次數: | 點閱:59 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討實施創思力導向的數學臆測教學於國小資優生之中可能出現的問題及解決方案。本研究的目的有兩個:其一,了解教師如何調整學習任務,發揮學習任務的潛力,增強國小資優生的數學創造力。其二,探討教師如何運用教學策略,以提升國小資優生的數學創造力。本研究採用行動研究法,以研究者授課的四年級和六年級的資優資源班為研究對象,運用抽離課程,為期三至四個月。教學單元則參考自《國小資優數學課程調整教學設計》分別進行周長與面積的變化關係、數方、解碼多邊形、體積與表面積的變化關係、因倍數大老二、蛋糕切切看等單元的任務設計。相關研究資料包括:教材和教案、教學時錄製的影片和對話、學生的學習單、成長小組的課後討論、與諍友的對話以及研究過程中的研究日誌。
研究結果發現,創思力導向的數學臆測任務設計在開放性設計原則,主要展現在造例階段與提出猜想階段;差異化與挑戰性原則,則主要展現在造例、證實階段;高認知需求原則,則主要展現在提出猜想階段;在延伸任務與一般化原則,則主要展現在造例、提出猜想、一般化猜想階段。比較兩個年級的任務皆能明顯的激發精緻性內涵,而六年級的任務相較於四年級的任務更能夠提升變通性與原創性的表現。至於創思力導向的數學臆測教學內涵,提升流暢性內涵主要展現在造例與提出猜想階段,兩個年級共同增進的內涵是產生個人多元造例,而四年級增進的內涵是從數據延伸增加猜想,六年級則是產生不同組內組間造例以及大膽提猜想;提升變通性內涵主要展現在提出猜想、效化與證實猜想階段,兩個年級共同增進的內涵是分辨猜想類別,而四年級增進的內涵是分類後再精煉猜想,六年級則是使用不同的閱讀造例方式、連結新舊經驗以及比較自己和他人想法;提升原創性內涵主要展現在造例與提出猜想階段,兩個年級共同增進比較與整合想法、從多類型產生原創猜想以及運用一般創思力的思考技巧。而不同處在於四年級的臆測教學歷程中,提升的原創性內涵是先比較與整合想法,再從多類型產生原創想法,最後是運用一般創思力的思考技巧等內涵。六年級則是先從多類型產生原創猜想,進而運用一般創思力的思考技巧,最後是比較與整合想法等內涵;提升精緻性內涵主要展現在提出猜想、效化與一般化猜想階段,在四年級的臆測教學歷程中,提升的精緻性內涵是精煉想法與修飾語句。六年級則是先調整前提、修飾語句,進而進行修飾想法等內涵。兩個年級共同增進的是精煉想法、修飾語句的內涵,除了次序性的差異,六年級則增加了調整前提的內涵。最後,本研究為創造性導向數學臆測教學教師和未來的研究方向提供建議。
This study aims to discuss the problems and solutions that may occur when implementing creativity-directed mathematical conjecturing teaching. The purpose of this study is two-fold. First, to understand how teachers modify learning tasks to promote their potential to enhance primary gifted students’ mathematical creativity. Second, to investigate how teachers utilize teaching strategies to enhance primary gifted students’ mathematical creativity. This study adopts action research method, focusing on fourth grade and sixth grade pull-out classes taught by the researcher for three to four months. Relative research materials include teaching materials and teaching plans, recorded videos and conversations while teaching, students’ worksheets, post-class discussion of teachers’ professional development groups, dialogues with critical friends, and research diary of the instruction-observer while the research is conducted. These records capture the difficulties encountered during this study and will be the basis to provide future strategies for solving them.
This research implicates several principles to design creativity-directed mathematical conjecturing task and teaching connotation. First, the principle of openness is mainly demonstrated in the stage of constructing cases and formulating conjectures. Second, the principle of increasing differentiation and challenge is mainly showcased in the stage of formulating conjectures and validation. Third, the principle of raising high cognitive demand is mainly performed in the stage of formulating conjectures. Fourth, the principle of extendindg task and generalization is mainly displayed in the stages of constructing cases, formulating conjectures, and generalizing conjectures. The tasks of both grades can obviously stimulate the connotation of elaboration. On the other hand, the tasks of the sixth grade can improve the connotation of flexibility and originality.
As for creativity-oriented conjecturing teaching connotation, the improvement of fluency is mainly seen in the stage of constructing cases and formulating conjectures. The common improvement of connotation in both grades is the generation of individual multiple cases. However, the connotation of the fourth grade is to extend and increase ideas from the data, while that of the sixth grade is to generate cases between groups and within different groups and boldly raise conjectures.
The improvement of flexibility connotation is mainly demonstrated in the stages of formulating conjectures, validation, and justification. Both grades developed the connotation of distinguishing the conjecture category. While the fourth grade develop the connotation of classifying and then refining the conjecture, the sixth grade develop the connotation of using different ways to read cases, connecting new and old experiences, and comparing their own ideas with others’.
The improvement of originality connotation is mainly demonstrated in the stages of constructing cases and formulating conjectures. Both grades developed the thinking skills of comparing and integrating ideas, generating original conjectures from multiple genres, and applying general creative thinking. The difference is that in the teaching process of the fourth grade, the original connotation of improvement is to first compare and integrate ideas, then generate original ideas from multiple types, and finally use general creative thinking skills and other connotations. In the sixth grade, original conjectures are generated from multiple types, and then general creative thinking skills are used, and finally, connotations such as comparison and integration of ideas are made.
The improvement of elaboration connotation can mainly be seen in the stages of formulating conjectures, validation, and generalization. In the process of teaching the fourth grade, the connotation of elaboration is to refine ideas and modify sentences; however, when teaching the sixth grade, the premise is first adjusted, the sentence is modified, and then the connotation (such as the ideas) is modified. Both grades improved the connotation of refining ideas and modifying sentences. Besides the difference in order, the sixth grade also increase the connotation of adjusting the premise. Finally, this research provides suggestions to the creativity-directed mathematical conjecturing teaching instructors and future research directions.
資優教育白皮書(2013)
身心障礙及資賦優異學生鑑定辦法(2013)
十二年國民基本教育資賦優異相關之特殊需求領域課程綱要(2018)
王鵬豪(2019)。高低年級數學臆測教學的規範之比較。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
李家兆、林心怡(2020)。國小資優數學課程調整的原則與省思。資優教育論壇,18(1),p.19-33。
呂金燮(2020)。航向不確定性的海洋:資優課程素養導向教學實踐。載於呂金燮、詹婷雅(主編),國小資優課程素養導向設計指引。台北市:國立臺北教育大學。
周姝聿(2018)。一位體制外教師實施臆測教學造例階段的任務設計之行動研究。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
林佑杰、張乃文、陳文勝、吳妮真(2021)。蛋糕切切看。載於歐人豪(主編),國小資優數學課程調整教學設計2。新北市:教育局
林劭帆(2020)。融入泰雅文化學校本位課程之臆測任務設計與實踐之行動研究。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
林碧珍、陳姿靜(2021)。數學臆測教學模式教戰守則。台北市:師大書苑。
林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐——以發展學童的數學論證為例。教科書研究,9(1),109-134。
林碧珍(2016)。數學臆測任務設計與實踐。台北市:師大書苑。
林碧珍(2019)。數學臆測任務設計與實踐:幾何量與統計篇。台北市:師大書苑。
林碧珍(2020a)。學生在臆測任務課堂表現的數學創造力評量。科學教育學刊,28(S),429-455。
林碧珍(2020b)。素養導向任務設計與實踐之教師專業發展研究。科技部人文司研究計畫編號MOST110-2511-H-007-001-MY3
林碧珍(2021)。素養導向數學臆測教學模式之理論與實務。台北市:師大書苑。
吳武典(2013)。臺灣資優教育四十年(三):惑與解惑。資優教育季刊,128,p.7-14。
侯貞伊、黃詩婷、尤心妤、李柏璋(2021)。因倍數大老二。載於歐人豪(主編),國小資優數學課程調整教學設計2。新北市:教育局
張世慧(2018)。創造力理論、教育與技法。台北市:五南。
張明文(編)(2020)。國小資優數學課程調整教學設計。新北市:新北市教育局。
張廖佩鈺(2019)。數學臆測教學的教師角色之研究。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
許瑛珍(2016)。認知模式創意問題解決之電腦輔助教學課程:年級與智能之學習差異。教育與心理研究,39(4),61-86。
陳正曄(2020)。在數學臆測教學下學生數學創造力的展現。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
陳佳明(2018)。一位國小五年級教師建立從造例到提出猜想臆測教學規範之行動研究。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
陳彥瑋、郭靜姿(2019)。創造力領域普遍性與特定性的爭辯。載於鄭英耀(主編),華人創造力理論與實務。台北市:遠流。
葉玉珠(2000)。創造力發展的生態系統模式及其應用於科技與資訊領域之內涵分析。教育心理學報,32 (1),p.95-122。
葉清田(2021)。十二年國教新課綱與教育行動研究。台北市:五南。
劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊,2(1),23-40。
劉祥通、陳明聰、徐偉民(2015)。資優學生的數學課程設計。載於郭靜姿(主編),資優教育課程設計與教學模式應用,3-2-3-17。台北市:華騰文化。
鄭章華(2018)。淺論十二年國教數學素養導向教學。台灣教育,709,p.83-91。
鄭皓宇、張語慈、邱奕、江岳亭(2021)。數方。載於歐人豪(主編),國小資優數學課程調整教學設計2。新北市:教育局
歐人豪(編)(2021)。國小資優數學課程調整教學設計2。新北市:新北市教育局。
藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究。未出版之碩士論文,國立新竹教育大學數理教育研究所,新竹市。
謝定澄(2022)。六年級學生在臆測教學下數學創造力的展現。未出版之碩士論文,國立清華大學數理教育研究所,新竹市。
Assmus, D., & Fritzlar, T. (2018). Mathematical giftedness and creativity in primary grades. In Mathematical creativity and mathematical giftedness (pp. 55-81). Springer, Cham.
Assmus, D., & Fritzlar, T. (2022). Mathematical creativity and mathematical giftedness in the primary school age range: an interview study on creating figural patterns. ZDM–Mathematics Education, 54(1), 113-131.
Aljughaiman, A., & Mowrer-Reynolds, E. (2005). Teachers’ conceptions of creativity and creative students. Journal of Creative Behavior, 39 , 17–34.
Beghetto, R. A. (2013). Nurturing creativity in the micro-moments of the classroom. In K. H. Kim, J. C. Kaufman, J. Baer & B. Sriraman (Eds.), Creatively gifted students are not like other gifted students: Research, theory, and practice (pp. 3-15). Rotterdam, The Netherlands: Sense Publishers
Benbow, C. P., & Minor, L. L. (1990). Cognitive profiles of verbally and mathematically precocious students: Implications for identification of the gifted. Gifted Child Quarterly, 34(1), 21-26.
Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics. Dordrecht, The Netherlands : Kluwer Academic Publishers.
Bicer, A. (2021). A Systematic Literature Review: Discipline-Specific and General Instructional Practices Fostering the Mathematical Creativity of Students. International Journal of Education in Mathematics, Science and Technology, 9(2), 252-281.
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55-72. doi:10.22329/jtl.v5i1.82
Daher, W., & Anabousy, A. (2018). Flexibility of pre-services teachers in problem posing in different environments. In Mathematical creativity and mathematical giftedness (pp. 229-252). Springer, Cham.
Davis, G. A. (2004). Creativity is forever (5th ed.). Iowa: Kenall/Hunt Publishing Company.
Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42-53). Dordrecht, The Netherlands: Kluwer. doi:10.1007/0-306-47203-1_3
Fried, M. N., & Amit, M. (2016). Reform as an issue for mathematics education research: Thinking about change, communication, and cooperation. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 257–274). New York, NY: Routledge.
Gallagher, J. J. (1994). Teaching the gifted child (4th ed.). Boston: Allyn and Bacon.
Gavin, M. K., Casa, T. M., Adelson, J. L., Carroll, S. R., & Sheffield, L. J. (2009). The impact of advanced curriculum on the achievement of mathematically promising elementary students. Gifted Child Quarterly, 53(3), 188-202.
Guilford, J. P. (1959). Traits of creativity. In H. H. Anderson (Ed.), Creativity and its cultivation (pp. 142-161). New York, NY: Harper & Brothers Publishers.
Guilford, J. (1967). The nature of human intelligence. New York, NY‖ McGraw-Hill.
Guilford, J. P. (1977). Way beyond the IQ. Creative Education Foundation.
Hadamard, J. (1945). An essay on the psychology of invention in the mathematical field. New York: Dover Publication.
Hershkovitz, S., Peled, I., & Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. In Creativity in mathematics and the education of gifted students (pp. 253-269). Brill Sense.
Isaksen, S. G., & Treffinger, D. J. (2004). Celebrating 50 years of reflective practice: Versions of creative problem solving. The Journal of Creative Behavior, 38(2), 75-101.
Johnson, D. T. (1994). Mathematics curriculum for the gifted. In J. VanTassel-Baska (Ed), Comprehensive curriculum for gifted learners (2nd ed.) (pp. 231-261). Boston, MA: Allyn and Bacon
Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The Four C Model of creativity. Review of General Psychology, 13(1), 1-12. doi:10.1037/a0013688
Klein, S., & Leikin, R. (2020). Opening mathematical problems for posing open mathematical tasks: what do teachers do and feel? Educational Studies in Mathematics, 105(3), 349-365.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren (Vol. 8). Chicago: University of Chicago Press.
Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
Leikin, R., Berman, A., & Koichu, B. (Eds.). (2009). Creativity in mathematics and the education of gifted students. Sense Publisher.
Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J.H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.),Proceedings of the 31st International Conference for the Psychology of Mathematics Education (Vol. 3, pp.161-168). Seoul, South Korea: Korean Society of Educational Studies in Mathematics.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin,A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students(pp. 129-145). Rotterdam, The Netherlands: Sense Publishers. doi:10.1163/9789087909352_010
Leikin, R. (2011). Teaching the mathematically gifted: Featuring a teacher. Canadian Journal of Science, Mathematics and Technology Education, 11, 78–89
Leikin, R. (2018). Openness and constraints associated with creativity-directed activities in mathematics for all students. Broadening the scope of research on mathematical problem solving: A focus on technology, creativity and affect, 387-397.
Leikin, R. (2019). Stepped tasks: Top-down structure of varying mathematical challenge. In Problem solving in mathematics instruction and teacher professional development (pp. 167-184). Springer, Cham.
Leikin, R. (2021). When practice needs more research: the nature and nurture of mathematical giftedness. ZDM–Mathematics Education, 53(7), 1579-1589.
Leikin, R., & Elgrably, H. (2020). Problem posing through investigations for the development and evaluation of proof-related skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research, 102, 101424.
Leikin, R., & Sriraman, B. (2022). Empirical research on creativity in mathematics (education): From the wastelands of psychology to the current state of the art. ZDM–Mathematics Education, 54(1), 1-17.
Lev-Zamir, H., & Leikin, R. (2013). Saying versus doing: teachers’ conceptions of creativity in elementary mathematics teaching. ZDM, 45(2), 295-308.
Lev, M., & Leikin, R. (2017). The interplay between excellence in school mathematics and general giftedness: Focusing on mathematical creativity. In Creativity and giftedness (pp. 225-238). Springer, Cham.
Lin, P. J. (2018a). Improving knowledge for teaching mathematical argumentation in primary classrooms. Journal of Mathematics Education, 11(1), 17-30.
Lin, P. J. (2018b). The development of students’ mathematical argumentation in a primary classroom. Educação & Realidade, 43, 1171-1192.
Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM, 49 (7), 1033-1039.
Maker, C. J. (1982). Teaching models in education of the gifted. London: An Aspen Publication.
Mills, G. E. (2008). 行動研究法:教師研究者的指引(蔡美華譯)。台北市:學富文化。
Miller, R. (1990). Discovering mathematical talent. ERIC Digest #E482
Moraová, H., Novotná, J., & Favilli, F. (2018). Ornaments and tessellations: Encouraging creativity in the mathematics classroom. In Mathematical creativity and mathematical giftedness (pp. 253-283). Springer, Cham.
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. NCTM.
National Research Council. (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. National Academies Press.
Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia—Social and Behavioral Sciences, 31, 285–291
Nohda, N. (1995). Teaching and evaluating using “open-ended problems”in classroom. Zentralblatt fur Didaktik der Mathematik, 27(2), 57-61.
OECD. (2021). PISA 2021 creative thinking framework (Third Draft).PISA 2022. https:// www.oecd.org/pisa/publications/pisa- 2021-assessment- and-analytical- framework.htm
Oldham, G. R., & Cummings, A. (1996). Employee creativity: Personal and contextual factors at work. Academy of management journal, 39(3), 607-634.
Phillipson, S. N., & Callingham, R. (2009). Understanding mathematical giftedness: Integrating self, action repertoires and the environment. In International handbook on giftedness (pp. 671-698). Springer, Dordrecht.
Poincaré, H. (1948). Science and method. New York: Dover.
Renzulli, J. S. (2003). The three-ring conception of giftedness: Its implications for understanding the nature of innovation. The international handbook on innovation, 79-96.
Rhode, M. (1961). An analysis of creativity. Phi Delta Kappan, 42, 305-310
Ridge, L., & Renzulli, J. (1981). Teaching Mathematics to the Talented and Gifted. In V. Glennon (Ed.) The mathematics education of exceptional children and youth, an interdisciplinary approach (pp.191-266). NCTM.
Rimm, S. B., Siegle, D., & Davis, G. A, (2018).資優教育概論(潘裕豐譯)。台北市:華騰文化。
Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18(1), 253–286.
Schoenfeld, A. H. (2007). Method. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 69–107). Charlotte, NC: Information Age.
Sheffield, L. J. (2009). Developing mathematical creativity—Questions may be the answer. In R.Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 87–100). Rotterdam, The Netherlands: Sense Publishers.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zdm, 3(29), 75-80.
Singer, M. (2006). A cognitive model for developing a competence-based curriculum in secondaryeducation. In: Al. Crisan (Ed.), Current and future challenges in curriculum development:Policies, practices and networking for change (pp. 121–141). Bucharest: Education 2000+Publishers. Humanitas Educational.
Singer, F. M., & Voica, C. (2015). Is problem posing a tool for identifying and developing mathematical creativity? In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp. 141–174). New York: Springer.
Singer, F. M. (2018). Enhancing creative capacities in mathematically promising students. Challenges and limits. In Mathematical Creativity and Mathematical Giftedness (pp. 1-23). Springer, Cham.
Sriraman, B. (2005).Are Giftedness and Creativity Synonyms in Mathematics? The Journal of Secondary Gifted Education; Fall 2005; 17, 1; ProQuest Central,
Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM 41(1&2), 13-27.
Sriraman, B., & Haavold, P. (2017). Creativity and giftedness in mathematics education: A pragmatic view. First compendium for research in mathematics education. Reston: National Council of Teachers of Mathematics.
Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. Free press.
Stinson, D. W., & Bullock, E. C. (2012). Critical postmodern theory in mathematics education research: A praxis of uncertainty. Educational Studies in Mathematics, 80(1-2), 41–55.
Stinson, D. W., & Bullock, E. C. (2015). Critical postmodern methodology in mathematics education research: Promoting another way of thinking and looking. Philosophy of Mathematics Education Journal, 29, 1–18. Retrieved from http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome29/index.html
Torrance, E. P. (1966). Torrance Tests of Creative Thinking: Norms-technical manual. Princeton, NJ: Personnel Press, Inc.
Torrance, E. P. (1974). Torrance Tests of Creative Thinking. Normstechnical movrual. Lextngton, MA: Ginn.
Torrance, E. P. (1988). The nature of creativity as manifest in its testing. The nature of creativity, 43-75.
Torrance, E.P. (1990). Torrance Test of Creative Thinking. Bensenville, IL: Scholastic Testing Service
Urban, K. K. (1997). Modeling creativity: The convergence of divergence or the act of balancing. Hong Kong: University of Hong Kong Social Science Research Center.
Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: An analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82(2), 201–221.
VanTassel-Baska J. & Stambaugh, T. (2006). Comprehensive curriculum for gifted learners (3rd ed.). Massachusetts: Allyn and Bacon
Vashchyshyn, I. I., & Chernoff, E. J. (2018). Still warring after all these years: Obstacles to a transdisciplinary resolution of the math wars. In L. Jao & N. Radakovic (Eds.), Transdisciplinarity in mathematics education: Blurring disciplinary boundaries (pp. 151–172). Dordrecht, The Netherlands: Springer.
Voica, C., & Singer, F. M. (2013). Problem modification as a tool for detecting cognitive flexibility in school children. ZDM, 45, 267-279.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes.Cambridge, MA: Harvard University Press.
Wallas, G. (1926). The art of thought. Referenced by Brown, R. T. (1989). Creativity: what to are we to measure? In Glover, J.; Ronning, R. and Reynolds, C., Handbook of Creativity, Plenum Press, New York.
Williams, F. E. (1970). Classroom Ideas for Encouraging Thinking and Feeling: A Total Creativity Program for Individualizing and Humanizing the Learning Process. Volume Five.
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for research in mathematics education, 27(4), 458-477.