研究生: |
陳冠宇 Chen, Guan-Yu |
---|---|
論文名稱: |
高頻及高功率氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析 The Fabrication and Analysis of High Frequency and High Power Density AlGaN/GaN HEMT |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 氮化鎵 、氮化鋁鎵 、高電子遷移率電晶體 |
外文關鍵詞: | GaN, AlGaN, HEMT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文中,將介紹製作於高阻值矽基板(111)上的氮化鋁鎵/氮化鎵高電子遷移率電晶體其在微波頻段的應用,利用閘極場平板結構製作出通道長度0.25μm與0.5μm元件閘極,其最大飽和電流密度與飽和區最大轉導增益分別為700 mA/mm和138 mS/mm;且在製程上進一步縮短源極到汲極間距至4μm,搭配『嵌入式閘極』的方式,提升元件高頻操作之特性,其中0.5μm的元件截止頻率fT從5.83GHz提升到28.11GHz,最大功率輸出頻率fmax從12.57GHz 也提升到60GHz。
在功率特性上,經由1.8GHz load-pull連續波系統量測,觀察到元件操作於Class A的偏壓點情況下(VDS = 20V, VGS = -5V) 有功率增益13dB、最大輸出功率密度0.83W/mm,功率附加效益18.43%的輸出特性。
Abstract
In this thesis, microwave performance of AlGaN/GaN high electron mobility transistors on high resistive silicon (111) substrate for power applications is investigated. Gate connected field plate is used. Maximum dc current density and extrinsic maximum transconductance gm,max are 700mA/mm and 138mS/mm respectively for a gate length (LG) 0.5μm device. To improve high frequency performance, the source to drain spacing is reduced to 4μm and the gate is recessed. The current gain cutoff frequency fT of 28.11 GHz and maximum frequency of available gain fmax of 60 GHz are achieved for a 0.5μm gate length device.
For power characteristics, measurements are performed in continuous-wave (CW) mode at 1.8 GHz using a load-pull system. The transistor delivers a power gain of 13dB, an output power density of 0.83W/mm, and a power-added efficiency PAE of 18.43% when biased at VDS=20V and VGS=-5V in class A operation.
參考文獻
[1] B.J. Baliga, "Trends in power semiconductor devices," IEEE Transactions on Electron Devices, Vol. 43, No.10, pp. 1717-1731, Oct. 1996.
[2] R. Tim Kemerley, H. Bruce Wallace, and Max N. Yoder, “Impact of Wide Bandgap Microwave Devices on DoD Systems,” Proceeding of the IEEE, Vol.90, No.6, June 2002.
[3] Kai Chang, “RF Microwave Wireless Systems,” John Wiley & Sons, 2000.
[4] Wikimedia commons.
[5] O.Ambacher, B. Foutz, J. Smart, M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., Vol.85, No.6, pp.334, March 1999.
[6] F. Sacconi, A.D. Carlo, P. Lugli, and H. Morko□, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, Vol. 48, pp. 450-457, 2001.
[7] S. Keller, YF Wu, G. Parish, NQ Ziang, JJ Xu, BP Keller, SP DenBaars, and UK Mishra, “Gallium nitride based high power hetero-junction field effect transistors: Process development and present status at UCSB,” IEEE Transactions on Electron Devices, Vol. 48, No. 3, March 2001.
[8] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. L. Linthicum, “12 W/mm AlGaN/GaN HFETs on silicon substrates,” IEEE Electron Device Lett., Vol. 25, No. 7, pp. 459–461, July 2004.
[9] S. Joblota, F. Semond, Y. Cordier, P. Lorenzini, and J. Massies, “High-electron-mobility AlGaN/GaN heterostructures grown on Si (001) by molecular-beam epitaxy,” Appl. Phys. Lett. 87, Sep. 2005.
[10] Y. Cordier, J.C. Moreno, N. Baron, E. Frayssinet, S. Chenot, B. Damilano, and F. Semond, “Demonstration of AlGaN/GaN High-Electron-Mobility Transistors Grown by Molecular Beam Epitaxy on Si (110),” IEEE Electron Device Lett., Vol. 29, No. 11, November 2008.
[11] D. Ducatteau, A. Minko, V. Ho□l, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaqui□re, J. C. De Jaeger, and S. Delage, “Output Power Density of 5.1/mm at 18 GHz With an AlGaN/GaN HEMT on Si Substrate,” IEEE Electron Device Lett., Vol. 27, No. 1, January 2006.
[12] S. Tirelli, D. Marti, H. Sun, A. R. Alt, H. Benedickter, E. L. Piner, and C. R. Bolognesi, “107-GHz (Al,Ga)N/GaN HEMTs on Silicon With Improved Maximum Oscillation Frequencies,” IEEE Electron Device Lett., Vol. 31, No. 4, April 2010.
[13] Y.-F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, “30-W/mm GaN HEMTs by Field Plate Optimization,” IEEE Electron Device Lett., Vol. 25, No. 3, March 2004.
[14] Guillermo Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” Prentice-Hall, 1996.
[15] P. Javorka “Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors,” Institute of Thin Films and Interfaces, February 2004.
[16] Y. Wu, “AlGaN/GaN Microwave Power High Mobility Transistor,” University of California Santa Barbara, July 1997.
[17] M. C. A. M. Koolen et al., “An improved de-embedding technique for on-wafer high-frequency characterization,” IEEE Bipolar Circuits and Technology Meeting, pp. 188-191, Sep. 1991.
[18] Yosuke GOTO, Youhei NATSUKARI, and Minoru FUJISHIMA, “New On-Chip De-Embedding for Accurate Evaluation of Symmetric Devices,” Japanese Journal of Applied Physics, Vol. 47, No. 4, 2008, pp. 2812–2816.
[19] B. J. Baliga, “Silicon RF Power MOSFETs,” WSP, 2005.
[20] Rongming CHU, “AlGaN-GaN Single- and Double-Channel High Electron Mobility Transistors,” Hong Kong University of Science and Technology, August 2004.
[21] 吳添立, “高功率4H-SiC RF MOSFETs設計與製作,” 國立清華大學, 2008.
[22] David M. Pozar, “Microwave Engineering,” John Wiley & Sons, 2004.
[23] M.E. Lin, Z.Ma, F.Y. Huang, Z. F. Fan, L. H. Allen, ”Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., Vol.64, pp.21, 1994.
[24] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology: Fundamentals, Practice, and Modeling,” Prentice Hall, 2000.
[25] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett., Vol. 19, No. 3, March 1998.
[26] R. Cuerdo, F. Calle, A. F. Bra□a, Y. Cordier, M. Azize, N. Baron, S. Chenot, and E. Mu□oz, “High temperature behaviour of GaN HEMT devices on Si(111) and sapphire substrates,” p hys. stat. sol. (c) 5, No. 6, 1971–1973, 2008.
[27] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress,” IEEE Transactions on Electron Devices, Vol. 50, Np. 10, October 2003.