研究生: |
郭孟鑫 Kuo, Meng-Hsin. |
---|---|
論文名稱: |
GARCH Option Pricing Model在台指選擇權的實證分析 Empirical Study on GARCH Option Pricing Model in Taiwan Market |
指導教授: |
蔡子晧
Tsai, Tzu-Hao |
口試委員: |
謝佩芳
Hsieh, Pei-Fang. 冼芻蕘 Sin, Chor-Yiu. |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 15 |
中文關鍵詞: | 選擇權 、實證分析 |
外文關鍵詞: | GARCH, Pricing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的目的在於建立一套有效率的交易策略,一般選擇權市場會使用的定價公式為Black-Scholes(1973) ,這樣的假設下無法捕捉波動率的隨機過程(Stochastic nature of volatility)與資產報酬的群聚現象(Correlation between volatility and spot return),所以本文將使用GARCH Option Model與傳統的Black-Scholes Model做比較,並驗證其是否會優於Black-Scholes Model。
先前的Heston-Nandi由於沒有封閉解而沒有辦法有效率的定價,本篇研究依循Heston and Nandi(2000) 帶有封閉解的GARCH Option Model,以Heston and Nandi不同於一般的GARCH(1,1)捕捉市場的波動率。根據台指選擇權的實證結果顯示,特別是在價外與價平時,Heston & Nandi價格比較接近市場價格,而在深價內時,三者並沒有太大差異,整體來說,使用GARCH Option Model可以獲得較好的交易策略。
This article aims to build an efficient trading strategy. The pricing formula Black-Scholes(1973)
Is widely used in the option market. However, the hypothesis of Black-Scholes is incapable of capturing the stochastic nature of volatility and correlation between volatility and spot return. Therefore, this article will compare GARCH Option Model with traditional Black-Scholes Model to see whether the former is better than the later. Heston-Nandi cannot provide an effective pricing strategy because it is lack of close form. This article will comply with Heston and Nandi(2000) and the close form of GARCH Option Model, to capture the market volatility with Heston and Nandi different from regular GARCH(1,1). According to the result shown in the option in Taiwan market, the price of Heston & Nandi is closer to market price especially when it is out of price and at the money. When it is deep in the price, there is no significant difference within the three models. Overall, GARCH Option Model can provide better trading strategy.
1.Brennan, M. J.1977. The pricing of contingent claims in discrete time models. Mimeo- graphed.
Vancouver: University of British Columbia.
2.Duan, J. (1995): The Garch Option Pricing Model, Math. Finance 5, 1–32.
3.FELLER, W.: "Two Singular Diffusion Problems," Annals of Mathematics, 54(1951), 173-182.
4.Heston, S. L. (1993), “A Closed Form Solution for Options with Stochastic Volatility,
with Applications to Bond and Currency Options,” Review of Financial Studies, 6,327-343.
5.Heston, S. L. and Nandi, S., (2000), “A Closed-Form GARCH Option Valuation Model,”
Review of Financial Studies, 13, 585-625
6.Kendall and Stuart, 1976 M.G. Kendall, A. Stuart The Advanced Theory of Statistics, Vol. I: 7.Distribution Theory Griffin, London (1976)
RUBINSTEIN, M. E.: "The Valuation of Uncertain Income Streams and the Pricing of Options,"
8.Bell Journal of Economics, 7(1976), 407-425.