簡易檢索 / 詳目顯示

研究生: 程政宇
Chen, Chen-Yu
論文名稱: 動態次結構系統之狀態基礎可次結構性理論研發與驗證
Development and Verification of State-Based Substructurability Theory for Dynamically Substructured System
指導教授: 杜佳穎
口試委員: 白明憲
陳博憲
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 131
中文關鍵詞: 動態次結構系統即時混合測試李亞普諾夫函數線性矩陣不等式最佳化
外文關鍵詞: dynamically substructured system, real time hybrid testing, Lyapunov function, linear matrix inequality, optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文創新提出動態次結構系統之可次結構性分析理論,以預判工程系統測試之準確度、效能與強健性。動態次結構系統為混和測試的一種,其策略是將受測工程系統拆解為物理和數值次結構兩種子系統,一部分以全比例物理原型測試,一部分以數值模型模擬,因此結合了典型全比例測試法之可靠度,與數值解析法之高效率等優點。物理次結構內安裝致動器和感測器,組成傳動系統,以同步物理原型與數值模型之邊界條件。為消除傳動系統之不理想動態,同步控制器設計是確保測試成功之要素,以避免數值與物理次結構之輸出訊號傳遞失真,導致測試失敗。
      近年已有許多文獻提出動態次結構測試存在「動態性」限制,若物理或數值次結構之原生動態不理想,例如低阻尼、極點靠近虛軸等等,容易引起測試不穩定、或者同步控制成效不佳,導致測試結果失真、不可靠、不易重複等等。因此本論文旨建構一套動態與強健性分析理論,以預判分析工程系統之可次結構性、避免低效能之動態測試或同步控制。
      本論文利用狀態空間模型、李亞普諾夫函數、類黎卡提不等式和線性矩陣不等式來分析動態次結構系統之強健性,並提出七種與可次結構性理論相關的指標,以預判並量化測試的效能。若指標值較高,可次結構性低、測試或模擬可能不易進行、低效能或容易失真;相反地,指標值低,代表可次結構性高、測試可行、效率佳。本論文建構一個雙變數動態次結構系統進行模擬及實驗,結果皆驗證若指標值越高,測試結果越不精確,系統易受到雜訊的影響。本論文提出之可次結構性理論相關指標,將有助於產學界了解動態次結構測試之「動態性」問題、並尋求正確與合理的解決方案。


      Substructurability theory is proposed to analyze the feasibility and suitability of dynamically substructured system (DSS) testing methods, and substructurability index quantifies the implementation efficiency of DSS tests. DSS is one of the hybrid testing techniques, which decompose an engineering system into numerical and physical substructures. Successful tests require a robust controller to compensate for unwanted dynamics introduced by actuator systems within the physical substructure and to achieve synchronized responses of the numerical and physical outputs in real-time.
      However, it is noted that the dynamic properties of the substructures sometimes influence the synchronization stability and accuracy. For example, low damping coefficient might cause system unstable or testing inefficiency. Therefore, this study introduces the concept of substructurability via a theory of system analysis in order to suggest the efficiency and robustness of DSS.
      This study analyze the robustness of DSS via state space representations, Lyapunov functions, Riccati-like inequalities and linear matrix inequalities (LMI) to propose 7 different indices to evaluate the testing efficacy in advance. When the index has a larger value, this means the corresponding real-time dynamic test is not robust and inefficient. When the index has a smaller value, the dynamic test is relatively robust and efficient. Analytical and experimental results based on a two-variable mass-spring-damper DSS are presented to verify this theory. The substructurability theory is contributive to interpret the dynamic limits of DSS and is helpful to search for reasonable solutions.

    第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 研究目標 6 1.4 本文架構 8 第二章 動態次結構系統介紹 9 2.1 次結構框架介紹與狀態空間模型推導 9 2.2 動態次結構系統之即時控制問題 13 第三章 系統強健性分析理論介紹 14 3.1 系統強健性分析理論建立之步驟說明 14 3.2 系統強健性分析理論之穩定性分析 19 第四章 可次結構性理論研發 23 4.1 動態次結構系統之動態性能介紹 23 4.2 可次結構性理論之指標介紹 25 4.2.1 被仿真系統指標 27 4.2.2 數值次結構指標 29 4.2.3 物理試體指標 32 4.2.4 傳動系統指標 33 4.2.5 動態次結構指標 34 4.2.6 開迴路次結構系統指標 36 4.2.7 全區域可次結構性指標 38 4.3可次結構性理論分析 39 第五章 雙變數動態次結構系統與實驗機台介紹 42 5.1 雙變數質量彈簧阻尼動態次結構系統介紹 42 5.2 動態次結構系統的動態介紹與分析 44 5.3 實驗機台與軟硬體設備介紹 50 5.4 系統識別 57 第六章 可次結構性理論之模擬與實驗驗證 63 6.1 參數設計與分析 63 6.2 模擬結果 68 6.3 實驗結果 105 6.4 模擬與實驗結果之分析與討論 121 第七章 結論與未來工作 123 7.1 結論 123 7.2 未來工作 124 參考文獻 126 附錄 130

    1. Oncu, S., et al. Robust yaw stability controller design for a light commercial vehicle using a hardware in the loop steering test rig. in IEEE Intelligent Vehicles Symposium. 2007. Piscataway, NJ, USA: IEEE.
    2. Ji, X., et al., A substructure shaking table test for reproduction of earthquake responses of high-rise buildings. Earthquake Engineering and Structural Dynamics, 2009. 38(12): p. 1381-1399.
    3. Cunha, A., E. Caetano, and F. Magalhaes, Output-only dynamic testing of bridges and special structures. Structural Concrete, 2007. 8(2): p. 67-85.
    4. Chen, C.Y., Comparison of Control Strategies for Real-Time Dynamically Substructured Systems. MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.
    5. Jiang, J.Y., The Development of Real-Time Finite Element Dynamically Substructured Systems. MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2013.
    6. Liu, J., et al., A novel integrated compensation method for actuator dynamics in real-time hybrid structural testing. Structural Control and Health Monitoring, 2013. 20(7): p. 1057-1080.
    7. Lamarche, C.P., et al., Comparison between real-time dynamic substructuring and shake table testing techniques for nonlinear seismic applications. Earthquake Engineering and Structural Dynamics, 2010. 39(12): p. 1299-1320.
    8. Chen, C., et al., Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering and Structural Dynamics, 2009. 38(1): p. 23-44.
    9. Bursi, O.S., et al., Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing. Earthquake Engineering and Structural Dynamics, 2011. 40(1): p. 1-19.
    10. Bursi, O.S., et al., Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing. Earthquake Engineering and Structural Dynamics, 2008. 37(3): p. 339-360.
    11. Bonnet, P.A., M.S. Williams, and A. Blakeborough, Compensation of actuator dynamics in real-time hybrid tests. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2007. 221(2): p. 251-264.
    12. Stoten, D.P., J.-Y. Tu, and G. Li. Adaptive control of generalised dynamically substructured systems. in 17th World Congress, International Federation of Automatic Control. 2008. Seoul, Korea, Republic of: Elsevier.
    13. Chen, C. and J.M. Ricles, Analysis of actuator delay compensation methods for real-time testing. Engineering Structures, 2009. 31(11): p. 2643-2655.
    14. Gao, X., N. Castaneda, and S.J. Dyke, Real time hybrid simulation: From dynamic system, motion control to experimental error. Earthquake Engineering and Structural Dynamics, 2013. 42(6): p. 815-832.
    15. Wu, B., L. Deng, and X. Yang, Stability of central difference method for dynamic real-time substructure testing. Earthquake Engineering and Structural Dynamics, 2009. 38(14): p. 1649-1663.
    16. Gawthrop, P.J., et al., Causality in real-time dynamic substructure testing. Mechatronics, 2009. 19(7): p. 1105-1115.
    17. Wallace, M.I., et al., Stability analysis of real-time dynamic substructuring using delay differential equation models. Earthquake Engineering and Structural Dynamics, 2005. 34(15): p. 1817-1832.
    18. Londono, J.M., et al., On the assessment of passive devices for structural control via real-time dynamic substructuring. Structural Control and Health Monitoring, 2012. 19(8): p. 701-722.
    19. Stoten, D.P., J.Y. Tu, and G. Li, Synthesis and control of generalized dynamically substructured systems. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2009. 223(I3): p. 371-92.
    20. Neild, S.A., et al., Control issues relating to real-time substructuring experiments using a shaking table. Earthquake Engineering and Structural Dynamics, 2005. 34(9): p. 1171-1192.
    21. Wallace, M.I., D.J. Wagg, and S.A. Neild, An adaptive polynomial based forward prediction algorithm for multi-actuator Real-time dynamic substructuring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005. 461(2064): p. 3807-3826.
    22. Carrion, J.E., B.F. Spencer Jr, and B.M. Phillips. Real-time hybrid testing of a semi-actively controlled structure with an MR damper. in American Control Conference. 2009. St. Louis, MO, United states: Institute of Electrical and Electronics Engineers Inc.
    23. Chen, B.S. and C.L. Lin, On the stability bounds of singularly perturbed systems. IEEE Transactions on Automatic Control, 1990. 35(11): p. 1265-1270.
    24. Chen, B.S., C.H. Lee, and Y.C. Chang, H tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Transactions on Fuzzy Systems, 1996. 4(1): p. 32-43.
    25. Tseng, C.S., B.S. Chen, and H.J. Uang, Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Transactions on Fuzzy Systems, 2001. 9(3): p. 381-392.
    26. Tseng, C.S. and B.S. Chen, H decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Transactions on Fuzzy Systems, 2001. 9(6): p. 795-809.
    27. Chen, B.S., Y.C. Chen, and Wang, On the attenuation and amplification of molecular noise in genetic regulatory networks. BMC bioinformatics, 2006. 7(1): p. 52.
    28. Chen, B.S., et al., A new measure of the robustness of biochemical networks. Bioinformatics, 2005. 21(11): p. 2698-2705.
    29. Tu, J.Y., Development of numerical-substructure-based and output-based substructuring controllers. Structural Control and Health Monitoring, 2013. 20(6): p. 918-936.
    30. Marquez, H.J., Nonlinear Control Systems: Analysis and Design. 2003: Wiley.
    31. Boyd, L., et al., Linear matrix inequalities in system and control theory. Vol. 85. 1994. i-ix.
    32. Rao, S.S., Mechanical vibrations. 5th ed. 2011, Upper Saddle River, N.J., USA: Prentice Hall.
    33. Chen, Y.C., Development and application of active real-time control system for multi-degree-of-freedom shaking tables. MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.
    34. Yang, H.T., Development of synchronisation controllers for substructuring tests of base-isolated structure systems. MS Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE