研究生: |
陳永祥 Chen, Yong-Xiang |
---|---|
論文名稱: |
立體電子效應對 Prion 蛋白片段與銅離子親和力的影響之探討 Stereoelectronic Effects on the Cu (II) Affinity of a Prion Protein Fragment |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
江昀瑋
吳淑褓 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 立體電子效應 |
外文關鍵詞: | prion protein, octarepeat domains, proline |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Octarepeat 是 prion protein (PrP)中的一段序列,這段序列會重複的出現在prion protein 胺基酸序列 60-91這段區域中, 而且 octarepeat 已知對於 Cu2+ 有相當良好的親和力。Proline 可以形成 exo 或是 endo 兩種構形,且由於立體電子效應的關係,當 4R 位置有拉電子基取代時 proline 會偏好 Cγ-exo 構形,而拉電子取代基位於 4S 位置時 proline 則會偏好 Cγ-endo 構形,在 octarepeat 的原始結構中,proline 較偏向 endo 構形。因此在論文中我們以 4號位置具有拉電子取代基的 proline 衍生物置換octarepeat的 proline,探討 proline 的構形對於 octarepeat 與 Cu2+ 的親和力是否會有影響,而置換的 proline 衍生物包括 4R-hydroxyproline (Hyp)、4R-fluoroproline (Flp)、4R-methoxyproline (Mop), 4S-hydroxyproline (hyp)、 4S-fluoroproline (flp) 和 4S-methoxyproline (mop)。經過置換後的胜肽在加入 Cu2+ 之後的螢光焠熄比例和錯合比例都沒有改變,而從 CD 和螢光的 glycine 競爭實驗所得之解離常數 (Kd) 比較得知,除了 Hyp 和 hyp 取代的胜肽解離常數有明顯提高之外,大部分經過置換的胜肽都沒有影響。解離常數的改變應該是因為 Hyp 和 hyp 的 OH 官能基產生的氫鍵影響到了胜肽和 Cu2+ 周圍環境中的水,導致 Hyp、hyp 取代的胜肽和 Cu2+ 配位能力降低,解離常數提高。雖然 Hyp和 hyp 取代的胜肽解離常數都有改變,但是從 CD 的 Far UV、 Near UV 和Visible 的光譜測量發現,hyp 取代的胜肽和 Cu2+ 後的構形與其他胜肽類似,而 Hyp 取代卻明顯不同,這其中差異應該是在於Hyp 和 hyp 兩者的 pyrrolidine ring 有不同的構形所造成。
The octapeptide (PHGGGWGQ) is a fragment of the prion protein (PrP) and this sequence is repeated in the human PrP 60-91 region. The octarepeat is known to have great affinity to copper (II) ions. Proline can form either a Cγ-exo ring pucker or a Cγ-endo ring pucker. Due to stereoelectronic effects, an exo ring pucker is preferred if an electron-withdrawing group is on the 4R position of proline while an electron-withdrawing substituent on 4S position favors an endo ring pucker. The proline of the octarepeat peptide in the native prion protein adopts an endo pucker. In this work we have studied how the ring pucker of proline affects the binding affinity of the peptide to Cu2+ ions by using 4R-hydroxyproline (Hyp)、4R-fluoroproline (Flp)、4R-methoxyproline (Mop), 4S-hydroxyproline (hyp)、 4S-fluoroproline (flp) and 4S-methoxyproline (mop). The fluorescence quenching behavior and binding stoichiometry of proline derivatives containing PrP peptides are similar to the wild type. The dissociation constant (Kd) measured by the fluorescence and CD glycine competition experiments is similar to that of the wild type with the exception of Hyp and hyp substituted peptides. The significent change in the dissociation constants of these two peptides might be due to the hydration of the OH group, which pertubes the environments of the coordination site and affects the coordination between Cu2+ and the peptides. Especially, Hyp substituted peptide has a significently different CD spectrum from those of the other PrP peptides upon binding to Cu2+. The difference between Hyp and hyp sunstituted peptides could be due to the conformation of their pyrrolidine rings.
1. Prusiner, S. B., Groth, D. F., Cochran, S. P., Masiarz, F. R., McKinley, M. P., and Martinez, H. M. (1980) Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent, Biochemistry 19, 4883-4891.
2. Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie, Science 216, 136-144.
3. Prusiner, S. B. (1991) Molecular biology of prion diseases, Science 252, 1515-1522.
4. Prusiner, S. B. (1998) Prions, Proc. Nat.l Acad. Sci. U. S. A. 95, 13363-13383.
5. Manson, J., West, J. D., Thomson, V., McBride, P., Kaufman, M. H., and Hope, J. (1992) The prion protein gene: a role in mouse embryogenesis?, Development 115, 117-122.
6. Harris, D. A., Lele, P., and Snider, W. D. (1993) Localization of the mRNA for a chicken prion protein by in situ hybridization, Proc. Natl. Acad. Sci. U. S. A. 90, 4309-4313.
7. Moser, M., Colello, R. J., Pott, U., and Oesch, B. (1995) Developmental expression of the prion protein gene in glial cells, Neuron 14, 509-517.
8. Ford, M. J., Burton, L. J., Morris, R. J., and Hall, S. M. (2002) Selective expression of prion protein in peripheral tissues of the adult mouse, Neuroscience 113, 177-192.
9. Stahl, N., Borchelt, D. R., Hsiao, K., and Prusiner, S. B. (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid, Cell 51, 229-240.
10. Prusiner, S. B. (2004) Prion biology and diseases, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
11. Shyng, S. L., Heuser, J. E., and Harris, D. A. (1994) A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits, J. Cell. Biol. 125, 1239-1250.
12. Gorodinsky, A., and Harris, D. A. (1995) Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin, J. Cell. Biol. 129, 619-627.
13. Naslavsky, N., Stein, R., Yanai, A., Friedlander, G., and Taraboulos, A. (1997) Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform, J. Biol. Chem. 272, 6324-6331.
14. Sunyach, C., Jen, A., Deng, J., Fitzgerald, K. T., Frobert, Y., Grassi, J., McCaffrey, M. W., and Morris, R. (2003) The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein, EMBO. J. 22, 3591-3601.
15. Burns, C. S., Aronoff-Spencer, E., Dunham, C. M., Lario, P., Avdievich, N. I., Antholine, W. E., Olmstead, M. M., Vrielink, A., Gerfen, G. J., Peisach, J., Scott, W. G., and Millhauser, G. L. (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein, Biochemistry 41, 3991-4001.
16. Westergard, L., Christensen, H. M., and Harris, D. A. (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease, Biochim. Biophys. Acta. 1772, 629-644.
17. Kozlowski, H., Luczkowski, M., and Remelli, M. (2010) Prion proteins and copper ions. Biological and chemical controversies, Dalton. Trans. 39, 6371-6385.
18. Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S. J., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase, Biochem. J. 344 Pt 1, 1-5.
19. Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to copper binding of native prion protein, J. Neurochem. 76, 69-76.
20. Sulkowski, E. (1992) Spontaneous conversion of PrPC to PrPSc, FEBS. Lett. 307, 129-130.
21. Aronoff-Spencer, E., Burns, C. S., Avdievich, N. I., Gerfen, G. J., Peisach, J., Antholine, W. E., Ball, H. L., Cohen, F. E., Prusiner, S. B., and Millhauser, G. L. (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy, Biochemistry 39, 13760-13771.
22. Chattopadhyay, M., Walter, E. D., Newell, D. J., Jackson, P. J., Aronoff-Spencer, E., Peisach, J., Gerfen, G. J., Bennett, B., Antholine, W. E., and Millhauser, G. L. (2005) The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4, J. Am. Chem. Soc. 127, 12647-12656.
23. Walter, E. D., Chattopadhyay, M., and Millhauser, G. L. (2006) The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity, Biochemistry 45, 13083-13092.
24. Millhauser, G. L. (2007) Copper and the prion protein: methods, structures, function, and disease, Annu. Rev. Phys. Chem. 58, 299-320.
25. Walter, E. D., Stevens, D. J., Visconte, M. P., and Millhauser, G. L. (2007) The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes, J. Am. Chem. Soc. 129, 15440-15441.
26. Garnett, A. P., and Viles, J. H. (2003) Copper binding to the octarepeats of the prion protein. Affinity, specificity, folding, and cooperativity: insights from circular dichroism, J. Biol. Chem. 278, 6795-6802.
27. Giacovazzo, C. (2002) Fundamentals of crystallography, Oxford University Press, Oxford ; New York.
28. DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T., and Markley, J. L. (2002) Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations, J. Am. Chem. Soc. 124, 2497-2505.
29. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure, Protein Sci. 12, 1188-1194.
30. Naduthambi, D., and Zondlo, N. J. (2006) Stereoelectronic tuning of the structure and stability of the trp cage miniprotein, J. Am. Chem. Soc. 128, 12430-12431.
31. Zheng, T. Y., Lin, Y. J., and Horng, J. C. (2010) Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein, Biochemistry 49, 4255-4263.
32. Vermeulen, W., Van Troys, M., Bourry, D., Dewitte, D., Rossenu, S., Goethals, M., Borremans, F. A., Vandekerckhove, J., Martins, J. C., and Ampe, C. (2006) Identification of the PXW sequence as a structural gatekeeper of the headpiece C-terminal subdomain fold, J. Mol. Biol. 359, 1277-1292.
33. Xiao, S., Bi, Y., Shan, B., and Raleigh, D. P. (2009) Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain, Biochemistry 48, 4607-4616.
34. Chiang, Y. C., Lin, Y. J., and Horng, J. C. (2009) Stereoelectronic effects on the transition barrier of polyproline conformational interconversion, Protein Sci. 18, 1967-1977.
35. Merrifield, B. (1986) Solid phase synthesis, Science 232, 341-347.
36. Chan, W. C., and White, P. D. (2000) Fmoc solid phase peptide synthesis : a practical approach, Oxford University Press, New York.
37. Skoog, D. A., Holler, F. J., and Crouch, S. R. (2007) Principles of instrumental analysis, 6th ed., Thomson Brooks/Cole, Belmont, CA.
38. Berova, N., Nakanishi, K. o., and Woody, R. (2000) Circular dichroism : principles and applications, 2nd ed., Wiley-VCH, New York.
39. Wu, S. P., and Liu, S. R. (2009) A new water-soluble fluorescent Cu(II) chemosensor based on tetrapeptide histidyl-glycyl-glycyl-glycine (HGGG), Sensor. Actuat. B-Chem. 141, 187-191.
40. O'Neil, I. A., Thompson, S., Kalindjian, S. B., and Jenkins, T. C. (2003) The synthesis and biological activity of C2-fluorinated pyrrolo[2,1-c][1,4]benzodiazepines, Tetrahedron Lett. 44, 7809-7812.
41. Hatcher, L. Q., Hong, L., Bush, W. D., Carducci, T., and Simon, J. D. (2008) Quantification of the binding constant of copper(II) to the amyloid-beta peptide, J. Phys. Chem. B 112, 8160-8164.
42. Dawson, R. M. C. (1986) Data for biochemical research, 3rd ed., Clarendon Press, Oxford.
43. Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites, Proc. Natl. Acad. Sci. U. S. A. 96, 2042-2047.
44. Wells, M. A., Jelinska, C., Hosszu, L. L., Craven, C. J., Clarke, A. R., Collinge, J., Waltho, J. P., and Jackson, G. S. (2006) Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4, Biochem. J. 400, 501-510.
45. Daniele, P. G., Prenesti, E., and Ostacoli, G. (1996) Ultraviolet-circular dichroism spectra for structural analysis of copper(II) complexes with aliphatic and aromatic ligands in aqueous solution, J. Chem. Soc., Dalton Trans., 3269-3275.
46. Kowalik-Jankowska, T., Rajewska, A., Wisniewska, K., Grzonka, Z., and Jezierska, J. (2005) Coordination abilities of N-terminal fragments of alpha-synuclein towards copper(II) ions: a combined potentiometric and spectroscopic study, J. Inorg. Biochem. 99, 2282-2291.