研究生: |
吳奐均 Wu, Huan-Chun |
---|---|
論文名稱: |
整合光介電泳技術及微流體晶片平台應用於自動化置換溶液與細胞之操作 Integration of microfluidic devices and an optically-induced dielectrophoresis device for medium replacement and cell manipulation and separation |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
李明昌
楊瑞珍 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 光介電泳力 、奈米微珠 、虛擬電極 、微流體 、細胞收集率 、細胞存活率 |
外文關鍵詞: | Optically-induced dielectrophoresis (ODEP), recovery rate of cell, survival rate of cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光介電泳技術是藉由交流電產生均勻電場使粒子極化,再利用投影機產生的光學圖案誘發形成虛擬電極,進而產生不均勻電場來操控粒子或細胞。由於光介電泳力的產生需要低導電度與適宜介電常數的溶液,目前常用0.2M蔗糖溶液。在傳統方式裡需要使用離心機離心多次,將細胞培養液完全置換成0.2M蔗糖溶液。此為一個複雜的且費時的動作,且反覆的置換過程中易使細胞遭受汙染,此外0.2M蔗糖溶液並不適合細胞長期滯留,若滯留過久會對影響細胞存活率。在本研究中,我們設計一個整合光介電泳技術及微流體之晶片平台,使得置換溶液過程得以完全自動化,並探討置換細胞溶液時,微型泵在不同壓力及頻率下的收集效率,同時測量在整合型晶片之介電泳力層所產生移動細胞之速度,和細胞之存活率。相較於傳統的置換方式,整個自動化置換過程只需歷時25分鐘。在置換溶液過程中有高達91%之細胞收集率。此置換完之細胞在ODEP層可以產生最高109.1μm/s之拖曳速度。更重要的是,實驗完的細胞得以存活培養,可將細胞存活率提升33.3%。新型的整合型微流體晶片可以達成自動化細胞分離及更換溶液之效果,並減少污染問題,以及大量的縮減了時間以及人力資源。本研究也是第一個將光介電泳系統與微流體系統整合的晶片,可提供一個平台快速更換細胞溶液和操控細胞。本研究可作為與光介電泳相關實驗晶片的前端裝置,進行快速自動化的溶液置換,提高實驗完之後的細胞存活率,並對生醫界發展光介電泳技術操控細胞提供貢獻。
Optically-induced dielectrophoresis (ODEP) has been demonstrated to generate virtual electrodes for manipulating particles/cells by illuminating a light pattern on photoconductive materials. Because the production of the ODEP force requires a solution that has suitably low conductivity and appropriate dielectric constant; currently 0.2M sucrose is used. However, it requires a complicated medium replacement process before one could manipulate cells. We traditionally centrifuged cells several times for the complete replacement of the medium from the culture medium to 0.2 M sucrose. It is a complex and time-consuming operation, and the repeated replacement process can easily lead to cell contamination problems. Furthermore, 0.2M sucrose is not suitable for the long-term viability of cells. In this work, we demonstrated an integration of a microfluidic device with an ODEP device such that the critical medium replacement process can be automated and the cells could be subsequently manipulated by using optical images. In comparison to conventional manual processes, the automated medium replacement process only took25 minutes. There was up to a 91% recovery rate of cells, and a 109.1μm/s dragging velocity was induced by ODEP. More importantly, the survival rate of cells could be greatly enhanced due to the faster automated process. The new, integrated microfluidic chip could automate the entire process of medium replacement without the contamination issue. It is then concluded that the developed microfluidic system may provide a platform for fast replacement of cell medium. It is also the first time that an ODEP device was integrated with microfluidic devices. By achieving automated and fast medium replacement, this device can be deployed for a wide range of ODEP-based sample pre-treatment processes while improving cell viability after completing the experiment. With further developments, this device may contribute to the area of ODEP-based cell manipulation.
References
1. C. M. Ho, Y. C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows.” Annual Review of Fluid Mechanics, 30, 579-612, 1998.
2. S. K. Sia, G. M. Whitesides, “Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies.” Electrophoresis,24, 3563-3576, 2003.
3. F. E. H. Tay, “Microfluidics and bio-MEMS applications.”Kluwer Academic Publishers, New York, 2002.
4. D. R. Reyes, D. Iossifidis, P. A. Auroux, Manz, A., “Micro total analysis systems. 1. Introduction, theory, and technology.” Analytical Chemistry,74, 2623-2636, 2002.
5. P. A. Auroux, D. Iossifidis, D. R. Reyes, A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications.” Analytical Chemistry,74, 2637-2652, 2002.
6. K. Y. Lien, W. Y. Lin, Y. F. Lee, C. H. Wang, H. Y. Lei, G. B. Lee, “Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification.” Journal of Microelectromechanical Systems,17, 288-301, 2008.
7. A. J.de Mello, N. Beard, “Dealing with 'real' samples: sample pre-treatment in microfluidic systems.” Lab on a Chip,3, 11N-19N, 2003.
8. P. Gascoyne, J. Satayavivad, M. Ruchirawat, “Microfluidic approaches to malaria detection.” Acta Tropica, 89, 357-369, 2004.
9. E. W. H. Jager, O. Inganas, I. Lundstrom, “Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation.” Science,288, 2335-2338, 2000.
10. K. J. Schwab, R. DeLeon, M. D. Sobsey, “Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR.” Applied and Environmental Microbiology, 62, 2086-2094, 1996.
11. P. Vulto, G. Medoro, L. Altomare, G. A. Urban, M. Tartagni, R. Guerrieri, N. Manaresi, “Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow.” Journal of Micromechanics and Microengineering,16, 1847-1853, 2006.
12. X. L. Zhang, J. M. Cooper, P. B. Monaghan, S. J. Haswell, “Continuous flow separation of particles within an asymmetric microfluidic device.” Lab on a Chip,6, 561-566, 2006.
13. C. Iliescu, G. L. Xu, P. L. Ong, K. J. Leck, “Dielectrophoretic separation of biological samples in a 3D filtering chip.” Journal of Micromechanics and Microengineering,17, S128-S136, 2007.
14. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers.” Ieee Journal of Selected Topics in Quantum Electronics,13, 235-243, 2007.
15. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice.” Nature,426, 421-424, 2003.
16. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching.” Nature Biotechnology,23, 83-87, 2005.
17. S. Choi, J. K. Park, “Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.” Lab on a Chip, 5, 1161-1167, 2005.
18. J. Voldman, “Electrical forces for microscale cell manipulation.” Annual Review of Biomedical Engineering,8, 425-454, 2006.
19. J. W. Choi, C. H. Ahn, S. Bhansali, H. T. Henderson, “A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems.” Sensors and Actuators B-Chemical,68, 34-39, 2000.
20. M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator.” Electrophoresis,22, 3883-3892, 2001.
21. M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, T. Okano, “Microfluidic devices for size-dependent separation of liver cells.” Biomedical Microdevices,9, 637-645, 2007.
22. S. Choi, S. Song, C. Choi, J. K. Park, “Continuous blood cell separation by hydrophoretic filtration.” Lab on a Chip, 7, 1532-1538, 2007.
23. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles.” Optics Letters,11, 288-290, 1986.
24. D. G. Grier, “A revolution in optical manipulation.” Nature,424, 810-816,2003.
25. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps.” Biophysical Journal,77, 2856-2863, 1999.
26. Y. Liu, G. J. Sonek, M. W. Berns, B. J. Tromberg, “Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry.” Biophysical Journal,71, 2158-2167, 1996.
27. P. P. Calmettes, M. W. Berns, “Laser-induced multiphoton processes in living cells.” Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,80, 7197-7199, 1983.
28. C. F. Chapman, Y. Liu, G. J. Sonek, B. J. Tromberg, “The use of exogenous fluorescent-probes for temperature-measurements in single living cells.” Photochemistry and Photobiology,62, 416-425, 1995.
29. Y. J. Kang, D. Q. Li, S. A. Kalams, J. E. Eid, “DC-Dielectrophoretic separation of biological cells by size.” Biomedical Microdevices,10, 243-249, 2008.
30. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems.” Electrophoresis,23, 2569-2582, 2002.
31. H. A.Pohl, “Dielectrophoresis.” Cambridge University Press, Cambridge, 1978.
32. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential-energy wells.” Journal of Physics D-Applied Physics,26, 1278-1285, 1993.
33. I. Doh, Y. H. Cho, “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process.” Sensors and Actuators a-Physical,121, 59-65, 2005.
34. G. H. Markx, M. S. Talary, R. Pethig, “Separation of viable and nonviable yeast using dielectrophoresis.” Journal of Biotechnology,32, 29-37, 1994.
35. M. Urdaneta, E. Smela, “The design of dielectrophoretic flow-through sorters using a figure of merit.” Journal of Micromechanics and Microengineering,18, 1-8, 2008.
36. M. Durr, J. Kentsch, T. Muller, T. Schnelle, M. Stelzle, “Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.” Electrophoresis,24, 722-731, 2003.
37. A. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P. N. Marche, M. Tartagni, R. Guerrieri, F. Chatelain, N. Manaresi, “Electronic sorting and recovery of single live cells from microlitre sized samples.” Lab on a Chip,6, 121-126, 2006.
38. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, “A CMOS chip for individual cell manipulation and detection.” Ieee Journal of Solid-State Circuits,38, 2297-2305, 2003.
39. P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images.” Nature,436, 370-372, 2005.
40. A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Physical Review Letters,24, 156-159, 1970.
41. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, M. C. Wu, “Light actuation of liquid by optoelectrowetting.” Sensors and Actuators a-Physical,104, 222-228, 2003.
42. R. A. Street, “Hydrogenated Amorphous Silicon.”Cambridge University Press, Cambridge, 1991.
43. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers.” Optics Communications,207, 169-175, 2002.
44. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers.” Journal of Microelectromechanical Systems,16, 491-499, 2007.
45. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires.” Nature Photonics,2, 85-89, 2008.
46. Y. H. Lin, G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting.” Biosensors & Bioelectronics,24, 572-578, 2008.
47. Y. H. Lin, G. B. Lee, “An optically induced cell lysis device using dielectrophoresis.” Applied Physics Letters,94, 2009.
48. D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si.” Applied Physics Letters,31, 292-294, 1977.
49. R. Biswas, B. C. Pan, “Microscopic nature of Staebler-Wronski defect formation in amorphous silicon.” Applied Physics Letters,72, 371-373, 1998.
50. T. Su, P. C. Taylor, G. Ganguly, D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon.” Physical Review Letters,89, 2002.
51. P. Stradins, “Light-induced degradation in a-Si : H and its relation to defect creation.” Solar Energy Materials and Solar Cells,78, 349-367, 2003.
52. A. M. Nardes, A. M. De Andrade, F. J. Fonseca, E. A. T. Dirani, R. Muccillo, E. N. S. Muccillo, “Low-temperature PECVD deposition of highly conductive microcrystalline silicon thin films.” Journal of Materials Science-Materials in Electronics,14, 407-411, 2003.
53. H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers-halogen derivatives of polyacetylene, (CH)x.” Journal of the Chemical Society-Chemical Communications,578-580,1977.
54. J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidia, M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation.” Lab on a Chip,9, 1714-1720, 2009.
55. S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, G. B. Lee, “High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.” Lab Chip, 13, 1371-1383, 2013.
56. Y. H. Lin, Y. W. Yang, Y. D. Chen, S. S. Wang, Y. H. Chang, M. H. Wu, “The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell -encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering.” Lab Chip, 12, 1164-1173, 2012.
57. Y.N. Yang, S. K. Hsiung, G. B. Lee, “A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure” Microfluidics and Nanofluidics, 6, 823-833, 2009.
58. H. Shafiee, M. B. Sano,E. A. Henslee,J. L. Caldwell, and R. V. Davalos,“Selective isolation of live/dead cells using contactless dielectrophoresis(cDEP)” Lab on a Chip, 10, 397-528, 2010.
59. X. B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne,“A unified theory of dielectrophoresis I and travelling wave dielectrophoresis” Journal of Physics D: Applied Physics, 27, 1571-1574, 1994.
60. S. G. G. Stokes,“On the effect of the internal friction of fluids on the motion of pendulums” Reprinted in Mathematical and Physical Papers, 3, 1880-1905, 1850.