研究生: |
顏琬儀 |
---|---|
論文名稱: |
電子顯微鏡無像差影像回復之研究 The study of aberration-free image recovery for transmission electron microscopy |
指導教授: |
陳福榮教授
開執中教授 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 過取樣 、像差 、相位問題 |
外文關鍵詞: | oversampling, phase problem, diffraction tomography |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
穿透式電子顯微鏡以提供高解析度、材料內部型態、晶體原子結構、及部分成分的訊息,成為現在奈米科技材料分析的時代新利器。電子利用通過電磁透鏡系統及光欄的組合,來控制成像、繞射與成分分析的訊號,然而這也產生了一些無可避免的像差,使得影像因此模糊而降低了分辨率,或無法完全反映樣品的真正訊息。除了像差的問題,穿透式電子顯微鏡在紀錄影像的同時,不幸的有一半的訊息也同時遺失了。在穿透式電子顯微鏡中,紀錄下來的影像則是波的強度(intensity),為 與它共軛複數 的乘績,正比於振幅的平方。這便是著名的相位問題(phase problem)。這一半的遺失訊息裡,影像空間與繞射空間中的相位分別和原子的內位能(inner potential)與原子之間的相互排列位置(relative position)有關。換言之,失去了相位,材料裡的一些必要的訊息也不見了,這不僅僅是發生在穿透式電子顯微鏡,包括x光繞射、中子繞射等等亦是如此。科學家因此在這方面做了相當多的努力,試圖將失去的相位回復(phase retrieval)。
在穿透式電鏡中,倒空間的相位回復可以幫助我們的得到實空間的無像差影像,本論文中,利用過取樣方法(oversampling)以氧化鎂的實驗為例,尤其繞射圖形將之影像回復。包括實驗值與模擬值的比較接在此論文中加以討論。進一歩而言,結合diffractive imaging 以及electron tomography,如果有數個不同方向的被回復的投影結果,三維影像也可以被重構,這個方法被稱為diffraction tomography,在本論文中使用模擬的27個單位晶胞,由不同方向的繞射圖形,成功回復實空間三維的無像差影像。優點則是可以避開直接在實空間取像而產生的像差問題。
Transmission electron microscopy (TEM) is a modern instrument for analyzing materials, including the imaging, structure and element analysis. However, as the diffraction patterns and images are recorded, the phase of the electronic waves is lost that the half information is unknown at the same time. Besides, as the electronic waves pass through the magnetic lens system, the unavoidable lens aberrations blur the images that it is not actually reflect the specimen when the images are recorded.
The phase in reciprocal space reveals the relative position of the atoms. From the phase retrieval the recovered image will not contain the aberrations because the lens aberrations do not affect the intensity of diffraction beam. To be brief, the goal in the thesis is to solve the phase problem and lens aberrations in TEM at the same time.
The oversampling method is still in the early stage in the phase retrieval for TEM, although the some simulations and experimental cases for x-ray are discussed in recent years. In the thesis we take MgO for example because its simple structure and light mass. Some limitation for overampling method will be discussed, and after overcome the difficulties of limitations, the experimental data will be shown and discussed. To do the comparison, not only the experimental but the simulation case will be discussed. After recovering the images of two-dimensions, it is further to do the three-dimensional reconstruction. That is, in the thesis we will discuss from several diffraction patterns in different directions, the diffraction tomography can be done and the 3-D image can be recovered in the simulation case.
1. Nobel Prize in Chemistry, Herbert A. Hauptmann and Jerome Karle for their outstanding achievements in the development of direct methods for the determination of crystal structures.
2. U. Weierstall, Q. Chen,J.C.H. Spence,Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation,Ultramicroscopy (2002),90.
3. J.M.Zuo,I. Vartanyants,Atomic Resolution imaging of a carbon nanotube from diffraction intensities, Science, vol.300,(2003).
4. L. D. Marks, E. Bengu, C. Collazo-Davlia, D. Grozea, E. Landree, C. Leslie and W. sinkler, Surface Rev. Lett. 5 (1998) 1087.
5. L. D. Marks and E. A. Landree, Acta Cryst. A54 (1998) 296.
6. John M. Cowley, Diffraction physics, Elsevier Science, (1990).
7. D. J. H. Cockayne, and D. R. Mckenzie, Acta Cryst. , A44 (1988), 870
8.Wei-Hua Wang, Q Wei and S. Friedrich, Appl. Phys. Lett, 71, (1997), 1053.
9.Warren, B. E. X-ray Diffraction Reading, MA: Addison Wesley.
10.Wei-Hua Wang, Q Wei and S. Friedrich, Physical Review B, (1998), 57.
11.王蓉, ”電子衍射物理教程”,北京冶金工業出版社,(2002).
12. John M Cowley, ”Electron Diffraction Techniques” Oxford, (1992).
13. 吳泰伯,”X光繞射原理與材料結構分析”, 民全書局, (1996).
14. Brent Fultz, Transmission Electron Microscopy and Diffractometry of Materials, Springer, (2001).
15. John C.H Spence, Experimental high-resolution electron microscopy, Oxford, (1988).
16. David B Williams, Transmission electron microscopy, Plenum,(1996).
17. D. Van Dyck, H. Lichte, K. D. van der Mast, Ultramicroscopy, (1996) ,64.
18. W. Coene, G. Janssen, M. Op De Beeck, D. Van Dyck, Phys. Rev. Lett., 69 (1992) 3743.
19. H. Lichte and B. Freitag , Ultramicroscopy, 81 (3-4) (2000) 177
20. H. Lichte and M. Lehmann, Adv. Imag. Elect. Phys., 123 (2002) 225.
21. D. Van Dyck, H. Lichte and J. C. H. Spence, Ultramicroscopy, 81 (3-4) (2000) 187.
22. Introduction to Electron Holography, edited by E. Völkl, E. F. Allard and D. C. Joy (Kluwer Academic Press, New York, 1999).
23. D. Van Dyck and W. Coene. A new procedure for wave function restoration in high resolution electron microscopy. Optik, 77 (1987) 125.
24.W. O. Saxton. What is the focus variation method? Is it new? Is it direct? Ultramicroscopy, 55 (1994) 171.
25. D. Van Dyck and M. Op de Beeck. New direct methods for phase and structure retrieval by HREM. In 12th International Congress on Electron Microscopy, Seattle, (1990)26.
26. H. Lichte. Electron image plane off-axis holography of atomic structures. In T. Mulvey and C. J. R. Sheppard, editors, Advances in Optical and Electron Microscopy, volume 12, Academic Press, London, (1991)25.
27. E. J. Kirkland. Improved high resolution image processing of bright field electron micrographs. I. Theory. Ultramicroscopy, 15 (1984) 151.
28. A. Tonomura. Applications of electron holography. Rev. Mod. Phys.,
59 (1987) 639.
29.W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck. Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett., 69 (1992) 3743.
30. M. A. Gribelyuk and J. L. Hutchison. On the iterative restoration of the exit plane wave function from defocus series in HREM. Ultramicroscopy, 45 (1992) 127.
31. D. Van Dyck and A. F. de Jong. Ultimate resolution and information
in electron microscopy: general principles. Ultramicroscopy, 47 (1992) 266.
32.A. I. Kirland, W. O. Saxton, K. L. Chau, K. Tsuno and M. Kawasaki, Ultramicroscopy, 57 (1995) 355.
33.A. I. Kirkland, W. O. Saxton, and R. R. Meyer. Indirect super-resolved microscopy: aberration compensation and image reconstruction of tiltazimuth data. In A. I. Kirkland and P. D. Brown, editors, The Electron, pages 426–436. London Institute of Metals, (1998).
34. P. D. Nellist, B. C. McCallum, and J. M. Rodenburg. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature, 374 (1995) 630.
35. P. D. Nellist and J. M. Rodenburg. Electron ptychography I: experimental demonstration beyond the conventional resolution limits. Acta Cryst, A54 (1998) 49.
36. T. Plamann and J. M. Rodenburg. Electron ptychography. II. Theory of 3-dimensional propagation effects. Acta Cryst., A54 (1998) 61.
37. R.W. Gerchberg and W.O. Saxton. A practical algorithm for the determination of phase from image from image and diffraction plane pictures,Optik,35(2),(1972)237.
38. J.R Fienup. Phase retrieval algorithms, a comparison. Applied Optics,21(15) (1982)2758.
39. J.R. Fienup, C.C. Wackerman, "Phase-Retrieval Stagnation Problems and Solutions," J. Opt. Soc. Am. A 3, (1986)1897.
40. J.R. Fienup , Reconstruction of a Complex-Valued Object from the Modulus of Its Fourier Transform Using a Support Constraint,", J. Opt. Soc. Am. A 4, (1987) 118.
41. J. Miao, and D.Sayre, Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects.J.Opt. Soc.Am, Vol.15, (1998)6.
42. J. Miao, P Charalambous, J Kirz, and D. Sayre. Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens. Nature,400, (1999)342.
43. J. Miao,J. Kirz, and D.Sayre. The oversampling phasing method.Acta Cryst, D56(2000)1312.
44.J. Miao and D.Sayre. On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Cryst, A56(2000)596.
45.U. Weierstall, Q. Chen,J.C.H. Spence,Image reconstruction from electron and X-ray diffraction patterns using iterative algorithms: experiment and simulation,Ultramicroscopy(2002)90.
46.J. Miao,Tetsuya Ishikawa, Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method, Physical Review B 67(2003).
47.J.Miao, James E.Amonette, Direct determination of a absolute electron density of nanostructured and disorded materials and sub-10-nm resolution,Physical Review ,B68(2003).
48.J.M.Zuo,I. Vartanyants,Atomic Resolution imaging of a carbon nanotube from diffraction intensities, Science, vol.300,(2003)
49.M.Gao,J.M.Zuo,Structure determination of individual singal-wall carbon nanotubes by nanoarea electron diffraction,Applied physics letters,vol82,(2003).
50. W. O. Saxton, in: Advances in Electronics and Electron Physics, Computer Techniques for Image Processing in Electron Microcopy (Academic Press, New York, 1978)
51. L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. Paganin. Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy. Ultramicroscopy, 88 (2001) 8597.
52.L. J. Allen, H. M. L. Faulkner, M. P. Oxley, K. A. Nugent, and D. Paganin. Phase retrieval from images in the presence of first-order vortices. Phys. Rev. E, 63 (2001) 376.
53. J. C. H. Spence, M. Howells, L. D. Marks, and J. Miao. Lensless imaging: a workshop on “new approaches to the phase problem for non-periodic objects”. Ultramicroscopy, 90 (2001) 1.
54. A. M. J. Huiser, A. J. J. Drenth, and H. A. Ferwerda. On phase retrieval in electron microscopy from image and diffraction pattern. Optik, 45 (1976) 303.
55. A. M. J. Huiser and H. A. Ferwerda. On the problem of phase retrieval in electron microscopy from image and diffraction pattern. II. On the uniqueness and stability. Optik, 46 (1976)407.
56. A. M. J. Huiser, P. van Toorn, and H. A. Ferwerda. On the problem of phase retrieval in electron microscopy from image and diffraction pattern. III. The development of an algorithm. Optik, 47 (1977)1.
57. H. Nyquist. Certain topics in telegraph transmission theory. Trans. AIEE, 47 (1928) 6.
58. A.G. Ramm, A.I Katsevich, The Radon Transform and Local Tomography Jose Baruchel,Jean-Yves Buffiere, Eric Maire, X-ray Tomography in Material Science.
59. Hiromitsu Furukawa, Miyoko Shimizu, System for Three-Dimensional Reconstruction of TEM Image Based on Computerized Tomography method,JEOL System Technology Co.,Ltd.
60. Ling Wang and Robert S. Granetz, Series expansion method in three-dimensional tomography, J. Opt. Soc.Am.A,Vol.10,No11,(1993)
61.Richard Blankenbecler, Three-dimensional reconstruction. I. Determination of pattern orientation, Physical Review B 69,(2004).
62. Earl J. Kirkland, Advanced computing in electron microscopy, Plenum,(1998).
63. William J. Palm, Introduction to Matlab 6 for Engineers, McGraw-Hill, (2001).