簡易檢索 / 詳目顯示

研究生: 劉紫璇
Law, Zhi-Xuan
論文名稱: 開發以氧化鈣與鎳為基礎的混成式雙功能材料通過化學迴圈進行二氧化碳捕捉與應用
CO2 Capture and Utilization via Calcium Looping using CaO-Ni-based Hybrid Dual Functional Material
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 潘詠庭
Pan, Yung-Tin
呂世源
Lu, Shih-Yuan
李岱洲
Lee, Tai-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 92
中文關鍵詞: 二氧化碳氧化鈣甲烷重組
外文關鍵詞: temperature-programmed
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣循環(CaL)涉及應用二氧化碳對氧化鈣進行碳酸化,並通過將捕獲的二氧化碳轉化為有用的產品來再生氧化鈣。通過結合CaL與甲烷重組(DRM),捕獲的二氧化碳可轉化為合成氣,具有高價值的化學原料和燃料。本研究已開發出由氧化鈣(CO2吸附劑),金屬鎳(DRM催化劑)和二氧化鈰(DRM助催化劑)組成的多功能材料(DFM)來驅動CaL-DRM串聯反應。在研究的第一部分,我們應用共沉澱法合成的CaO-Ni-CeO2 多功能材料的CO2吸收效率為10.3 mmolCO2/gCaO,H2 和CO產率分別為754.4 mmolH2/gNi和454.6 mmolCO/gNi,甲烷重組所需的起始溫度為680 °C。氧化鈣的碳酸化反應受材料的鹼度影響,而甲烷與二氧化碳的轉化率則被材料中金屬鎳的分散度所影響。第二部分採用氣溶膠合成方法合成了CaO-Ni-CeO2 多功能材料。氣溶膠納米粒子的利用對催化領域非常有益,因為它可以產生大量有效的金屬-載體-助催化劑相互作用以促進界面催化(例如DRM)。 此氣溶膠合成的CaO-Ni-CeO2納米結構對於CaL-DRM的性能方面有著極大的改進:高CO2吸收效率(~12.1 mmolCO2/gCaO), 高CO2轉化率(~97.2 %), 低甲烷重組起始溫度(600 °C)和足夠高的運行穩定性。總體而言,我們的工作展示了使用程序升溫反應平台對 CaL-DRM 動力學進行定量實時分析的原型研究。


    Calcium looping (CaL), which involves carbonation of CaO by CO2 and regeneration of CaO through the conversion of the captured CO2 into useful products, shows promise for carbon capture and utilization. By integrating CaL with methane dry reforming (DRM), the captured CO2 can be converted into syngas, a valuable chemical feedstock and fuel. Herein, a dual functional material (DFM) composed of CaO (CO2 adsorbent), Ni (DRM catalyst) and CeO2 (promoter for DRM) had been developed to drive the CaL-DRM tandem processes. In the first part of study, the CaO-Ni-CeO2 DFM synthesized using co-precipitation method possessed CO2 uptake efficiency of 10.3 mmolCO2/gCaO, H2 and CO yields of 754.4 mmolH2/gNi and 454.6 mmolCO/gNi, respectively, and a moderate required temperature for methane dry reforming (680 °C). The carbonation of CaO was strongly influenced by the basicity of the material, and the conversions of CH4 with the captured CO2 were affected by the Ni dispersion in the material. In the second part, aerosol-based synthetic approach was employed for the synthesized of CaO-Ni-CeO2 DFM. The utilization of aerosol nanoparticles is highly beneficial to catalysis field by the creation of strong metal-support-promoter interaction for promoting an interfacial catalysis (i.e., such as DRM). The CaO-Ni-CeO2 hybrid nanostructure showed great improvement in the performance of cyclic CaL-DRM: high CO2 uptake efficiency (~12.1 mmolCO2/gCaO), high CO2 conversion (~97.2 %), low required temperature for methane dry reforming (600 °C) and sufficiently high operational stability. Overall, our work demonstrates a prototype study of using a temperature-programmed reaction platform for a quantitative, real-time analysis on CaL-DRM kinetics. The mechanistic understanding of CaL-DRM by the CaO-Ni-CeO2 DFM were elucidated, showing promise for the catalyst optimizations.

    Abstract II Table of Contents IV List of Figures VI List of Tables IX Chapter 1: Introduction 1 1.1 CO2 Capture and Utilization 1 1.2 Calcium Looping 2 1.3 Calcium Looping Integrated with Dry Reforming of CH4 3 1.4 Calcium Oxide-based Dual Functional Material 4 1.5 Aerosol-based Synthetic Approach for the Synthesis of Hybrid Nanostructure 6 1.6 Research Objectives 8 Chapter 2: Experimental Methods 10 2.1 Material 10 2.2 Synthesis of Catalyst 11 2.2.1 Sol-gel based Co-precipitation Method 11 2.2.2 Aerosol-based Synthetic Approach 13 2.3 Materials Characterization 15 2.3.1 High Resolution Transmission Electron Microscopy (HR-TEM) 15 2.3.2 Field Emission Scanning Electron Microscopy (FE-SEM) 15 2.3.3 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 15 2.3.4 X-Ray Diffraction (XRD) 15 2.3.5 Specific Surface Area and Pore Volume Analyses 16 2.3.6 Chemisorption Analyses 16 2.3.7 Thermogravimetric Analysis (TGA) 17 2.3.8 X-Ray Photoelectron Spectroscopy (XPS) 17 2.4 Temperature-programmed Activity Test of Calcium Looping Combined with Methane Dry Reforming 19 Chapter 3: Results and Discussions 22 3.1 Calcium Looping of CO2 Capture Coupled to Syngas Production using Ni-CaO-based Dual Functional Material 22 3.1.1 Material Characterization 22 3.1.2 Activity Test 32 3.1.3 Stability Test 54 3.2 Aerosol-based Synthesis of CaO-Ni-CeO2 Hybrid Nanoparticle for Calcium Looping-Integrated Carbon Capture and Utilization 60 3.2.1 Material Characterization 60 3.2.2 Activity Test 70 3.2.3 Stability Test 77 Chapter 4: Conclusions 81 Chapter 5: Future Works 83 Chapter 6: References 85

    [1] P. Wu, Y. Tao, H. Ling, Z. Chen, J. Ding, X. Zeng, X. Liao, C. Stampfl, J. Huang, Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study, ACS Catalysis 9(11) (2019) 10060-10069.
    [2] T.-W. Wu, Y.-T. Hung, M.-T. Chen, C.-S. Tan, CO2 capture from natural gas power plants by aqueous PZ/DETA in rotating packed bed, Separation and Purification Technology 186 (2017) 309-317.
    [3] J. Hu, P. Hongmanorom, P. Chirawatkul, S. Kawi, Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature, Chemical Engineering Journal (2021) 130864.
    [4] M.A. Sabri, S. Al Jitan, D. Bahamon, L.F. Vega, G. Palmisano, Current and future perspectives on catalytic-based integrated carbon capture and utilization, Science of The Total Environment (2021) 148081.
    [5] T.T. da Cruz, J.A.P. Balestieri, J.M. de Toledo Silva, M.R. Vilanova, O.J. Oliveira, I. Ávila, Life cycle assessment of carbon capture and storage/utilization: From current state to future research directions and opportunities, International Journal of Greenhouse Gas Control 108 (2021) 103309.
    [6] Z.-s. Li, F. Fang, X.-y. Tang, N.-s. Cai, Effect of temperature on the carbonation reaction of CaO with CO2, Energy & Fuels 26(4) (2012) 2473-2482.
    [7] V. Manovic, E.J. Anthony, Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials, Environmental Science & Technology 45(24) (2011) 10750-10756.
    [8] S. Wang, S. Fan, L. Fan, Y. Zhao, X. Ma, Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles, Environmental Science & Technology 49(8) (2015) 5021-5027.
    [9] J. Hu, P. Hongmanorom, V.V. Galvita, Z. Li, S. Kawi, Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming, Applied Catalysis B: Environmental 284 (2021) 119734.
    [10] N. Wang, Y. Feng, X. Guo, Atomistic mechanisms study of the carbonation reaction of CaO for high-temperature CO2 capture, Applied Surface Science 532 (2020) 147425.
    [11] T. Wang, D.-C. Xiao, C.-H. Huang, Y.-K. Hsieh, C.-S. Tan, C.-F. Wang, CO2 uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds, Journal of Hazardous Materials 270 (2014) 92-101.
    [12] D. Wei, Z. Jia, Z. Sun, Y. Gao, G. Wang, L. Zeng, Process simulation and economic analysis of calcium looping gasification for coal to synthetic natural gas, Fuel Processing Technology 218 (2021) 106835.
    [13] A.A. Scaltsoyiannes, A.A. Lemonidou, On the factors affecting the deactivation of limestone under calcium looping conditions: A new comprehensive model, Chemical Engineering Science (2021) 116797.
    [14] J.A. Martens, A. Bogaerts, N. De Kimpe, P.A. Jacobs, G.B. Marin, K. Rabaey, M. Saeys, S. Verhelst, The chemical route to a carbon dioxide neutral world, ChemSusChem 10(6) (2017) 1039-1055.
    [15] L. Azancot, L.F. Bobadilla, M.A. Centeno, J.A. Odriozola, IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane, Applied Catalysis B: Environmental 285 (2021) 119822.
    [16] Y.-S. Lin, J.-Y. Tu, D.-H. Tsai, Steam-promoted methane-CO2 reforming by NiPdCeOx@SiO2 nanoparticle clusters for syngas production, International Journal of Hydrogen Energy (2021).
    [17] J.-M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Frontiers in chemistry 2 (2014) 81.
    [18] S. Tian, F. Yan, Z. Zhang, J. Jiang, Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency, Science Advances 5(4) (2019) eaav5077.
    [19] S.M. Kim, P.M. Abdala, M. Broda, D. Hosseini, C. Copéret, C. Müller, Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases, ACS Catalysis 8(4) (2018) 2815-2823.
    [20] T.-Y. Liang, P.Y. Low, Y.-S. Lin, D.-H. Tsai, Spherical porous nanoclusters of NiO and CeO2 nanoparticles as catalysts for syngas production, ACS Applied Nano Materials 3(9) (2020) 9035-9045.
    [21] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-phase synthesis of Ni–CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas, The Journal of Physical Chemistry C 122(22) (2018) 11789-11798.
    [22] C.j. Liu, J. Ye, J. Jiang, Y. Pan, Progresses in the preparation of coke resistant Ni‐based catalyst for steam and CO2 reforming of methane, ChemCatChem 3(3) (2011) 529-541.
    [23] C. Wang, N. Sun, M. Kang, X. Wen, N. Zhao, F. Xiao, W. Wei, T. Zhao, Y. Sun, The bi-functional mechanism of CH4 dry reforming over a Ni–CaO–ZrO2 catalyst: Further evidence via the identification of the active sites and kinetic studies, Catalysis Science & Technology 3(9) (2013) 2435-2443.
    [24] B. Bachiller-Baeza, C. Mateos-Pedrero, M. Soria, A. Guerrero-Ruiz, U. Rodemerck, I. Rodríguez-Ramos, Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3, Applied Catalysis B: Environmental 129 (2013) 450-459.
    [25] A. Al-Mamoori, A.A. Rownaghi, F. Rezaei, Combined capture and utilization of CO2 for syngas production over dual-function materials, ACS Sustainable Chemistry & Engineering 6(10) (2018) 13551-13561.
    [26] N. Charisiou, K. Papageridis, L. Tzounis, V. Sebastian, S. Hinder, M. Baker, M. AlKetbi, K. Polychronopoulou, M. Goula, Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction, International Journal of Hydrogen Energy 44(1) (2019) 256-273.
    [27] H. Sun, Q. Zhang, J. Wen, T. Tang, H. Wang, M. Liu, P. Ning, L. Deng, Y. Shi, Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane, Applied Surface Science 521 (2020) 146395.
    [28] D.G. Araiza, D.G. Arcos, A. Gómez-Cortés, G. Díaz, Dry reforming of methane over Pt-Ni/CeO2 catalysts: Effect of the metal composition on the stability, Catalysis Today 360 (2021) 46-54.
    [29] N. Yahi, S. Menad, I. Rodríguez-Ramos, Dry reforming of methane over Ni/CeO2 catalysts prepared by three different methods, Green Processing and Synthesis 4(6) (2015) 479-486.
    [30] P. Zhang, J. Tong, K. Huang, Combining electrochemical CO2 capture with catalytic dry methane reforming in a single reactor for low-cost syngas production, ACS Sustainable Chemistry & Engineering 4(12) (2016) 7056-7065.
    [31] H. Ay, D. Üner, Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts, Applied Catalysis B: Environmental 179 (2015) 128-138.
    [32] Z. Liu, D.C. Grinter, P.G. Lustemberg, T.D. Nguyen‐Phan, Y. Zhou, S. Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, Dry reforming of methane on a highly‐active Ni‐CeO2 Catalyst: Effects of metal‐support interactions on C−H bond breaking, Angewandte Chemie International Edition 55(26) (2016) 7455-7459.
    [33] H.-L. Wang, C.-Y. Hsu, K.C. Wu, Y.-F. Lin, D.-H. Tsai, Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications, Advanced Powder Technology 31(1) (2020) 104-120.
    [34] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic study of gas-phase controlled synthesis of copper oxide-based hybrid nanoparticle for CO oxidation, The Journal of Physical Chemistry C 120(25) (2016) 13638-13648.
    [35] T.-Y. Liang, H.-H. Chen, D.-H. Tsai, Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming, Fuel Processing Technology 201 (2020) 106335.
    [36] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic catalysis of methane combustion using Cu–Ce–O hybrid nanoparticles with high activity and operation stability, The Journal of Physical Chemistry C 120(48) (2016) 27389-27398.
    [37] Y.-A. Sun, L.-T. Chen, S.-Y. Hsu, C.-C. Hu, D.-H. Tsai, Silver nanoparticles-decorating manganese oxide hybrid nanostructures for supercapacitor applications, Langmuir 35(44) (2019) 14203-14212.
    [38] L.-T. Chen, U.-H. Liao, J.-W. Chang, S.-Y. Lu, D.-H. Tsai, Aerosol-based self-assembly of a Ag–ZnO hybrid nanoparticle cluster with mechanistic understanding for enhanced photocatalysis, Langmuir 34(17) (2018) 5030-5039.
    [39] X. Gao, J. Ashok, S. Kawi, Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: A recent review, Reactions 1(2) (2020) 162-194.
    [40] S. Kawi, Y. Kathiraser, J. Ni, U. Oemar, Z. Li, E.T. Saw, Progress in synthesis of highly active and stable nickel‐based catalysts for carbon dioxide reforming of methane, ChemSusChem 8(21) (2015) 3556-3575.
    [41] S. Kwon, H.J. Kwon, J.I. Choi, H.C. Lee, A.G. Russell, S.G. Lee, T. Kim, S.S. Jang, Toward enhanced CO2 adsorption on bimodal calcium-based materials with porous truncated architectures, Applied Surface Science 505 (2020) 144512.
    [42] H. Wang, Z. Li, N. Cai, Multiscale model for steam enhancement effect on the carbonation of CaO particle, Chemical Engineering Journal 394 (2020) 124892.
    [43] Y.A. Criado, B. Arias, J.C. Abanades, Effect of the carbonation temperature on the CO2 carrying capacity of CaO, Industrial & Engineering Chemistry Research 57(37) (2018) 12595-12599.
    [44] F. Wang, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H.X. Li, K. Wu, G.Q. Xu, Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction, Catalysis Today 281 (2017) 295-303.
    [45] H. Sun, J. Wang, J. Zhao, B. Shen, J. Shi, J. Huang, C. Wu, Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion, Applied Catalysis B: Environmental 244 (2019) 63-75.
    [46] W.-J. Jang, H.-M. Kim, J.-O. Shim, S.-Y. Yoo, K.-W. Jeon, H.-S. Na, Y.-L. Lee, D.-W. Jeong, J.W. Bae, I.W. Nah, Key properties of Ni–MgO–CeO2, Ni–MgO–ZrO2, and Ni–MgO–Ce(1− x)Zr(x)O2 catalysts for the reforming of methane with carbon dioxide, Green Chemistry 20(7) (2018) 1621-1633.
    [47] J. Wei, E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, Journal of Catalysis 224(2) (2004) 370-383.
    [48] L. Lyu, Y. Han, Q. Ma, S. Makpal, J. Sun, X. Gao, J. Zhang, H. Fan, T.-S. Zhao, Fabrication of Ni-based bimodal porous catalyst for dry reforming of methane, Catalysts 10(10) (2020) 1220.
    [49] X. Liao, R. Gerdts, S.F. Parker, L. Chi, Y. Zhao, M. Hill, J. Guo, M.O. Jones, Z. Jiang, An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst, Physical Chemistry Chemical Physics 18(26) (2016) 17311-17319.
    [50] L. Wang, J. Hu, H. Liu, Q. Wei, D. Gong, L. Mo, H. Tao, C. Zhang, Three-dimensional mesoporous Ni-CeO2 catalysts with Ni embedded in the pore walls for CO2 methanation, Catalysts 10(5) (2020) 523.
    [51] S. Zhu, X. Lian, T. Fan, Z. Chen, Y. Dong, W. Weng, X. Yi, W. Fang, Thermally stable core–shell Ni/nanorod-CeO2@ SiO2 catalyst for partial oxidation of methane at high temperatures, Nanoscale 10(29) (2018) 14031-14038.
    [52] F. Qin, B. Nohair, W. Shen, H. Xu, S. Kaliaguine, Promotional effects of CeO2 on stability and activity of CaO for the glycerolysis of triglycerides, Catalysis Letters 146(7) (2016) 1273-1282.
    [53] N. Wang, W. Qian, W. Chu, F. Wei, Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming, Catalysis Science & Technology 6(10) (2016) 3594-3605.
    [54] Q. Liu, S. Wang, G. Zhao, H. Yang, M. Yuan, X. An, H. Zhou, Y. Qiao, Y. Tian, CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance, International Journal of Hydrogen Energy 43(1) (2018) 239-250.
    [55] X. Liao, Y. Zhang, M. Hill, X. Xia, Y. Zhao, Z. Jiang, Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride, applied catalysis A: General 488 (2014) 256-264.
    [56] Y. Turap, I. Wang, T. Fu, Y. Wu, Y. Wang, W. Wang, Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane, International Journal of Hydrogen Energy 45(11) (2020) 6538-6548.
    [57] K. Han, W. Yu, L. Xu, Z. Deng, H. Yu, F. Wang, Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst, Fuel 291 (2021) 120182.
    [58] M.M. Nair, S. Abanades, Solid-state redox kinetics of CeO2 in two-step solar CH4 partial oxidation and thermochemical CO2 conversion, Catalysts 11(6) (2021) 723.
    [59] Z. Wu, B. Yang, S. Miao, W. Liu, J. Xie, S. Lee, M.J. Pellin, D. Xiao, D. Su, D. Ma, Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane, ACS Catalysis 9(4) (2019) 2693-2700.
    [60] X. Zhang, Z. Vajglova, P. Mäki‐Arvela, M. Peurla, H. Palonen, D.Y. Murzin, S.A. Tungatarova, T.S. Baizhumanova, Y.A. Aubakirov, Mono‐and Bimetallic Ni−Co catalysts in dry reforming of methane, ChemistrySelect 6(14) (2021) 3424-3434.
    [61] M. Rydén, A. Lyngfelt, T. Mattisson, Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers, Energy & Fuels 22(4) (2008) 2585-2597.
    [62] L.-S. Fan, F. Li, Chemical looping technology and its fossil energy conversion applications, Industrial & Engineering Chemistry Research 49(21) (2010) 10200-10211.
    [63] A. Lyngfelt, Chemical looping combustion: Status and development challenges, Energy & Fuels 34(8) (2020) 9077-9093.

    QR CODE