研究生: |
朱雯軒 Wen-Hsiuan Chu |
---|---|
論文名稱: |
沉積作用對膠體與放射性核種傳輸之影響 Impacts of Sedimentation on Colloids and Radionuclide Transport |
指導教授: |
李四海
Shih-Hai Li |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 核種傳輸 、非平衡模式 、雙區間傳輸模式 |
外文關鍵詞: | radionuclide transport, non-equilibrium model, two-region transport model |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文旨在研究膠體與核種於沉積土壤中的遷移行為,由文獻 Environmental Science & Technology- Markus Flury顯示,沉積土壤的傳輸模式並不適合於裂縫傳輸模型,並非傳統的膠體傳輸觀念,而是適合非平衡模式(non-equilibrium model),即把液相系統中分為可移動水層與不可移動水層,即所謂的雙區間傳輸模型(two-region transport model),來探討膠體對核種傳輸的影響。
本論文基於此一觀點,深入探討膠體尺寸與膠體傳輸機制的相關物理及數學模型,並利用此數學模型來探討膠體大小與放射性核種傳輸之關係。研究假設不同傳輸模型,當膠體較大時,無法進入岩層中,可傳輸較遠距離; 反之,當膠體尺寸越小時,則是受延散(dispersion)進入多孔性岩體(porous media)的影響,使得它的傳輸距離不遠。 因此,研究膠體在不同情況下,對於放射性核種傳輸具有很大的影響。核種與膠體在地下水的傳輸假設為以下三種機制;(1)假設膠體與核種均不可進入岩層裡;(2)假設核種可進入岩層裡,但膠體無法進入岩層裡;(3)假設核種與膠體均可以進入岩層裡。利用拉普拉司轉換法可以對單獨只有膠體存在之傳輸模型求得解析解。而核種與膠體傳輸方程式需耦合,利用數值方法可解出總可移動核種之濃度,並對膠體與核種之相關參數進行靈敏度分析及討論。
1. Van der Lee, J., Ledoux E., and DeMarsily, G., "Modeling of colloidal uranium transport in a fractured medium," J. Hydrol., 139, 135, 1992.
2. Ibaraki, M. and Sudicky, E. A., "Colloid-facilitated contaminant transport in discretely fractured porous media - 1. Numerical formulation and sensitivity analysis," Water Resour. Res., 31(12), 2945, 1995.
3. Ibaraki, M. and Sudicky, E. A., "Colloid-facilitated contaminant transport in discretely fractured porous media - 2. Fracture network examples," Water Resour. Res., 31(12), 2961, 1995.
4. Baek, I and Pitt, Jr, W. W., "Colloid-facilitated radionuclide transport in fracture porous rock," Waste Manag., 16(4), 313, 1996.
5. Van de Weerd, H., Leijnse, A. and VanRiemsdijk, W. H., "Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions," J. Contam. Hydrol., 32, 313, 1998.
6. Gang Chen, Markus Flury, James B. Harsh “Colloid-Facilitated transport of cesium in variably saturated Hanford Sediments”, Environ.Sci.Technol. 39,3435,2005,
7. Saiers, J. E. and Hornberger, G. M., "The role of colloidal kaolinite in the transport of cesium through laboratory sand columns," Water Resour. Res., 32(1), 33, 1996.
8. AbdelSalam, A. and Chrysikopoulos, C. V., "Analysis of a model for contaminant transport in fractured media in the presence of colloids," J. Hydrol., 165, 261, 1995.
9. Tanaka, S. and Nagasaki, S., "Impact of colloid generation on actinide migration in high-level radioactive waste disposal: Overview and laboratory analysis," Nucl. Technol., 118(1), 58, 1997.
10. Van Genuchten, M. T., D. H. Tang and R.Guennelon, “Some exactsolutions for solute transport through soil containing large cylindrical macropores ,”Water Resour. Res., 20(3), 335-346 , 1984.
11. Van Genuchten, M. T and R,J.Wagenet, “Two-site/two-region Models for pesticide Transport and Degradation:Theoretical Development and Analytical Solutions.”Soil. Sci. Am. J. 53, 1303-1310, 1989
12. Wang,H.F.and Anderson,M.P. Introduction to groundwater modeling:finite difference and finite element methods.W.H.Greeman,New York,1982
13. S .K .Kamra, B. Lennartz, M.Th.Van Genuchten, P. Widmoser “Evaluating non-equilibrium solute transport in small soil columms.”Journal of Contamoninant Hydrology. 48, 189-212, 2001
14. James E. Saiers, John J. Lenhart. “Transport of Silica Colloids through Unsaturated Porous Media:Experimental Results and Model Comparisons” Environmental Science and Technology. 36, 769-777, 2002
15. 任春平,「放射性核種於裂縫岩層中傳輸現象之研究-膠體對傳輸之影響」,博士論文,國立清華大學,2000。
16. 楊惠婷,「膠體於裂縫岩層中傳輸機制對放射性核種遷移影響之研
究」,碩士論文,國立清華大學,2003。