簡易檢索 / 詳目顯示

研究生: 楊家琪
Yang, Chia-Chi
論文名稱: 建構熱啟動 Taq 去氧核醣核酸聚合酵素及其突變蛋白之功能研究
Construction of a hot start Taq DNA polymerase and functional studies of its mutants
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 藍忠昱
Lan, Chung-Yu
周裕珽
Chou, Yu-Ting
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 76
中文關鍵詞: 熱啟動去氧核醣核酸聚合酶突變建構蛋白
外文關鍵詞: Hot start, Taq DNA polymerase, mutants, Construction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從嗜熱水生菌提取的去氧核醣核酸聚合酶 (Taq pol) 由於廣泛應用於 DNA 擴增、即時聚合酶鏈鎖反應 (real time PCR) 和 DNA 定序,目前已經成為分子生物學的常用試劑之一。傳統上大多使用 Pluthero 的方法萃取 Taq pol 但此純化方法需要耗費較長時間,因此已開發出利用大腸桿菌過表達重組的 Taq pol,並且在該系統中也研究了改善其功能的突變蛋白。因為 Taq pol 在室溫下具有顯著的活性,使聚合酶鏈鎖反應中形成非特異性產物影響後續實驗。一些研究顯示 Klentaq (N端缺失Taq pol) 在 37℃ 下可以顯著降低酵素活性,而在反應溫度下 (約72℃) 可維持正常活性。另外也有文獻顯示一些具有突變的 Klentaq 表現出更快或對抑制物有更高容忍度的性質。研究的目的是建構一個可以提供效率更佳的熱啟動Taq DNA聚合酶。在我們的研究中,首先構建了全長 Taq DNA聚合酶 (Taq pol) 和截短的 Taq DNA 聚合酶 (Klentaq,N端1-235個胺基酸缺失)以及數個文獻證實不同功能的單點或多點突變,以比較它們的活性。並利用即時螢光定量 PCR 檢測這些不同功能的突變蛋白,包含對溫度敏感性和提升擴增速率。結果顯示,結合熱啟動功能和增加延長能力點突變的 Taq pol 和 Klentaq 都具有熱穩定性。即時熒光定量PCR結果也顯示 Taq pol 和 Klentaq 上的 E742R/A743K 突變比野生型反應速度更快,並且同時在結合熱啟動和快速功能的多點突變體觀察到相同結果。而在溫度敏感性試驗中,含有 E626K 或 I707L 突變的 Taq pol 和 Klentaq 可在低溫下顯著降低活性並在 PCR 步驟中增加活性。這些結果表明了多個突變可以將不同的酵素性質組合在一起,也顯示我們可以藉由不同功能的酵素組合改進其功能並可在生活中更廣泛應用。


    DNA polymerase from Thermus aquaticus (Taq pol) has become a common reagent in molecular biology because of its widely used in DNA amplification, quantitative real time polymerase chain reaction (real time PCR) and DNA sequencing. Most Taq pol was usually extracted with Pluthero's method, but the purification requires long time. Therefore, recombinant Taq pol from overexpression in Escherichia coli was developed, and in this system mutants improving its function were also studied. Taq pol has significant activity at room temperature, and then causes non-specific priming in PCR. Some reports showed that a truncated form of Taq pol, Klentaq (an N-terminal deletion), had apparently reduced activity at 37°C and retain normal activity at reaction temperature (about 72°C). The other reports said that Klentaq with some mutations revealed faster or inhibitor-resistant properties. The aim of the study is to create a hot start Taq DNA polymerase which can also provide better efficiency. In our study, several mutations on both full length Taq (Taq pol) and truncated Taq (Klentaq, deletion of N-terminal 1-235 amino acids) were constructed to compare their activities. Real time PCR was used to test the function of these mutants, and check points were temperature sensitivity and amplification. Not only that, we also focused on developing time saving method to produce Taq pol, Klentaq and their mutants. Results showed that both Taq pol and Klentaq which combined hot start function and increasing elongation ability mutation had heat stability. According to real time PCR results, mutant E742R/A743K on both Taq pol and Klentaq showed faster elongation rate than that of wild type. In temperature-sensitivity test, Taq pol and Klentaq which containing single mutation of E626K or I707L showed significantly decreasing activity at lower temperature and increasing activity at PCR step. Our results also revealed that multiple mutations could combine different properties. With the different enzyme function combination, multiple mutation on DNA polymerase allowed many extensive applications in our life.

    中文摘要………………………………………………………………………………2 Abstract……………………………………………………………………………….3 謝誌……………………………………………………………………………………5 Contents……………………………………………………………………………….6 Contents of Tables and Figures………………………………………………………8 Chapter 1. Introduction…………………………………………………….……….10 1.1 Taq DNA polymerase………………………………………………….…….10 1.2 Hot start PCR……………………………………………………………..…10 1.3 Function analysis of truncation and different point mutations on Taq DNA polymerase……….………………………………………….....…12 1.4 Motivation…………………………………………………………………..13 Chapter 2. Materials and Methods…………………………………………………15 2.1 Materials…………………………………………………………………….15 2.2 Protein construction, recombinant and mutagenesis of Taq pol……………...15 2.2.1 Construction of Klentaq polymerase……………………………………15 2.2.2 Construction of Taq pol and Klentaq mutants…………………………...16 2.3 Protein expression and purification………………………………………….16 2.3.1 Expression of Taq pol, Klentaq and their mutants………………………16 2.3.2 Purification of Taq pol, Klentaq and their mutants……………………...17 2.4 Identification of Taq pol, Klentaq and their mutants…………………………18 2.4.1 SDS-PAGE………………………………………………………...…...18 2.4.2 Western Blot…………………………………………………………….18 2.4.3 In-gel digestion and protein identification by MALDI-TOF/TOF MS….18 2.5 Quantification of protein concentration……………………………………..20 2.6 Polymerase Chain Reaction (PCR) assay……………………………………20 2.7 Functional Assays………………………………………………………...…21 2.7.1 Heat stability property…………………………………………………..21 2.7.2 Quantitative real time PCR assay……………………………………….21 2.7.3 Temperature sensitivity test……………………………………………..22 Chapter 3. Results and Discussions………………………………………………...23 3.1 Construction of Taq pol, Klentaq and their mutants………………………….23 3.2 Protein expression and purification………………………………………….24 3.3 Protein quantification and identification…………………………………….25 3.4 The enzyme activity of Taq pol, Klentaq and their mutants………………….26 3.5 Heat stability of Taq pol, Klentaq and their mutants…………………………27 3.6 Quantitative real time PCR assay……………………………………………28 3.7 Temperature sensitivity test of Taq pol, Klentaq and their mutants…………..30 Chapter 4. Conclusion………………………………………………………………33 Tables and Figures…………………………………………………………………..35 References…………………………………………………………………………...72 Appendix………………………………………………………………….…………76   Contents of Tables and Figures Table 1. Mutagenized sites and their expected function………………………………35 Table 2. Oligonucleotides primers for constructing Klentaq and mutants…………….36 Table 3. Molecular weights and extinction coefficient of Taq pol, Klentaq and their mutants…………………………………………………………….37 Table 4. DNA sequence and oligonucleotides primers for functional assay…………..38 Table 5. Mass list of Taq pol, Klentaq and their mutants………………………………39 Table 6. Summary of Taq pol, Klentaq and their mutants………...…………………...40 Figure 1. Construction of the recombinant plasmid…………………………………..41 Figure 2. PCR products of Klentaq insert and its mutants…………………………….42 Figure 3. The flow chart of protein expression and purification………………………44 Figure 4. Purification of Taq pol and its mutants……………………………………...45 Figure 5. Purification of Klentaq and its mutants……………………………………..47 Figure 6. Western blot of Taq pol and its mutants……………………………………..49 Figure 7. Western blot of Klentaq and its mutants…………………………………….50 Figure 8. The enzyme activity of Taq pol and its mutants……………………………..51 Figure 9. The enzyme activity of Klentaq and its mutants…………………………….52 Figure 10. Heat stability of Taq pol and its mutants…………………………………...53 Figure 11. Heat stability of Klentaq pol and its mutants………………………………55 Figure 12. TaqMan quantitative real time PCR assay of Taq pol and its mutants……...57 Figure 13. CT value of TaqMan quantitative real time PCR assay of Taq pol and its mutants………………...………………………………………….58 Figure 14. SYBR Green quantitative real time PCR assay of Taq pol and its mutants...59 Figure 15. CT value of SYBR Green quantitative real time PCR assay of Taq pol and its mutants…………………………………………………...……….60 Figure 16. SYBR Green quantitative real time PCR assay of Klentaq and its mutants..61 Figure 17. CT value of SYBR Green quantitative real time PCR assay of Klentaq and its mutants…………………...……………………………………….63 Figure 18. Running method of temperature sensitivity test…………………………...64 Figure 19. Temperature sensitivity test of Taq pol and its mutants……………………65 Figure 20. CT value of temperature sensitivity test of Taq pol and its mutants………...66 Figure 21. Temperature sensitivity test of Klentaq and its mutants…………………...67 Figure 22. CT value of temperature sensitivity test of Klentaq and its mutants……...69 Figure 23. The mutational sites of Taq DNA polymerase……………………...……70

    Barnes, W. M. (1992). The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene, 112(1), 29-35.
    Beese, L. S., Derbyshire, V., & Steitz, T. A. (1993). Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science, 260(5106), 352-355.
    Blanco, L., Bernad, A., Blasco, M. A., & Salas, M. (1991). A general structure for DNA-dependent DNA polymerases. Gene, 100, 27-38.
    Brock, T. D., & Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol, 98(1), 289-297.
    Champlot, S., Berthelot, C., Pruvost, M., Bennett, E. A., Grange, T., & Geigl, E. M. (2010). An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One, 5(9). doi:10.1371/journal.pone.0013042
    Chen, S. Q., Zheng, X. J., Cao, H. R., Jiang, L. H., Liu, F. Q., & Sun, X. L. (2015). A simple and efficient method for extraction of Taq DNA polymerase. Electronic Journal of Biotechnology, 18(5), 355-358. doi:10.1016/j.ejbt.2015.08.001
    Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol, 127(3), 1550-1557.
    Chou, Q., Russell, M., Birch, D. E., Raymond, J., & Bloch, W. (1992). Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res, 20(7), 1717-1723.
    Dabrowski, S., & Kur, J. (1998). Recombinant His-tagged DNA polymerase. I. Cloning, purification and partial characterization of Thermus thermophilus recombinant DNA polymerase. Acta Biochim Pol, 45(3), 653-660.
    Dang, C., & Jayasena, S. D. (1996). Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol, 264(2), 268-278. doi:10.1006/jmbi.1996.0640
    Eckert, K. A., & Kunkel, T. A. (1990). High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res, 18(13), 3739-3744.
    Ellsworth, D. L., Rittenhouse, K. D., & Honeycutt, R. L. (1993). Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques, 14(2), 214-217.
    Eom, S. H., Wang, J., & Steitz, T. A. (1996). Structure of Taq polymerase with DNA at the polymerase active site. Nature, 382(6588), 278-281. doi:10.1038/382278a0
    Gudnason, H., Dufva, M., Bang, D. D., & Wolff, A. (2007). Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res, 35(19), e127. doi:10.1093/nar/gkm671
    Hebert, B., Bergeron, J., Potworowski, E. F., & Tijssen, P. (1993). Increased PCR sensitivity by using paraffin wax as a reaction mix overlay. Mol Cell Probes, 7(3), 249-252. doi:10.1006/mcpr.1993.1036
    Holland, P. M., Abramson, R. D., Watson, R., & Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A, 88(16), 7276-7280.
    Ignatov, K. B., Bashirova, A. A., Miroshnikov, A. I., & Kramarov, V. M. (1999). Mutation S543N in the thumb subdomain of the Taq DNA polymerase large fragment suppresses pausing associated with the template structure. FEBS Lett, 448(1), 145-148.
    Ignatov, K. B., Miroshnikov, A. I., & Kramarov, V. M. (1998). Substitution of Asn for Ser543 in the large fragment of Taq DNA polymerase increases the efficiency of synthesis of long DNA molecules. FEBS Lett, 425(2), 249-250.
    Innis, M. A., Myambo, K. B., Gelfand, D. H., & Brow, M. A. (1988). DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A, 85(24), 9436-9440.
    Kaboev, O. K., Luchkina, L. A., Tret'iakov, A. N., & Bahrmand, A. R. (2000). PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucleic Acids Res, 28(21), E94.
    Kaijalainen, S., Karhunen, P. J., Lalu, K., & Lindstrom, K. (1993). An alternative hot start technique for PCR in small volumes using beads of wax-embedded reaction components dried in trehalose. Nucleic Acids Res, 21(12), 2959-2960.
    Kainz, P., Schmiedlechner, A., & Strack, H. B. (2000). Specificity-enhanced hot-start PCR: addition of double-stranded DNA fragments adapted to the annealing temperature. Biotechniques, 28(2), 278-282.
    Kellogg, D. E., Rybalkin, I., Chen, S., Mukhamedova, N., Vlasik, T., Siebert, P. D., & Chenchik, A. (1994). TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques, 16(6), 1134-1137.
    Kermekchiev, M. B., Kirilova, L. I., Vail, E. E., & Barnes, W. M. (2009). Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res, 37(5), e40. doi:10.1093/nar/gkn1055
    Kermekchiev, M. B., Tzekov, A., & Barnes, W. M. (2003). Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res, 31(21), 6139-6147.
    Kim, Y., Eom, S. H., Wang, J., Lee, D. S., Suh, S. W., & Steitz, T. A. (1995). Crystal structure of Thermus aquaticus DNA polymerase. Nature, 376(6541), 612-616. doi:10.1038/376612a0
    Klenow, H., & Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A, 65(1), 168-175.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
    Lawyer, F. C., Stoffel, S., Saiki, R. K., Chang, S. Y., Landre, P. A., Abramson, R. D., & Gelfand, D. H. (1993). High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR Methods Appl, 2(4), 275-287.
    Lebedev, A. V., Paul, N., Yee, J., Timoshchuk, V. A., Shum, J., Miyagi, K., . . . Zon, G. (2008). Hot start PCR with heat-activatable primers: a novel approach for improved PCR performance. Nucleic Acids Res, 36(20), e131. doi:10.1093/nar/gkn575
    Lin, Y., & Jayasena, S. D. (1997). Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer. J Mol Biol, 271(1), 100-111. doi:10.1006/jmbi.1997.1165
    Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709-715. doi:10.1038/362709a0
    Lindahl, T., & Nyberg, B. (1972). Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11(19), 3610-3618.
    Monis, P. T., Giglio, S., & Saint, C. P. (2005). Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem, 340(1), 24-34. doi:10.1016/j.ab.2005.01.046
    Nath, K., Sarosy, J. W., Hahn, J., & Di Como, C. J. (2000). Effects of ethidium bromide and SYBR Green I on different polymerase chain reaction systems. J Biochem Biophys Methods, 42(1-2), 15-29.
    Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., & Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature, 313(6005), 762-766.
    Paul, N., Shum, J., & Le, T. (2010). Hot start PCR. Methods Mol Biol, 630, 301-318. doi:10.1007/978-1-60761-629-0_19
    Scalice, E. R., Sharkey, D. J., & Daiss, J. L. (1994). Monoclonal antibodies prepared against the DNA polymerase from Thermus aquaticus are potent inhibitors of enzyme activity. J Immunol Methods, 172(2), 147-163.
    Williams, J. F. (1989). Optimization strategies for the polymerase chain reaction. Biotechniques, 7(7), 762-769.
    Wolffs, P., Grage, H., Hagberg, O., & Radstrom, P. (2004). Impact of DNA polymerases and their buffer systems on quantitative real-time PCR. J Clin Microbiol, 42(1), 408-411.
    Yakimovich, O. Y., Alekseev, Y. I., Maksimenko, A. V., Voronina, O. L., & Lunin, V. G. (2003). Influence of DNA aptamer structure on the specificity of binding to Taq DNA polymerase. Biochemistry (Mosc), 68(2), 228-235.
    Yamagami, T., Ishino, S., Kawarabayasi, Y., & Ishino, Y. (2014). Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering. Front Microbiol, 5, 461. doi:10.3389/fmicb.2014.00461

    QR CODE