研究生: |
郭家均 Guo, Jia-Jun |
---|---|
論文名稱: |
應用於混沌光達系統之低複雜度深度感知演算法與架構設計 Low-complexity Depth-sensing Algorithm and Architecture Design for Chaotic LiDAR System |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
林凡異
Lin, Fan-Yi 邱瀞德 Chiu, Ching-Te 黃柏鈞 Huang, Po-Chiun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 光達 、深度感測 、局部搜索 |
外文關鍵詞: | LiDAR, Depth Sensing, Local Search |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光達是一種廣泛應用在大地測量學、大氣物理學,以及自動駕駛車的遙測技術。光達以雷射光照射物體並由光波傳送到接收的時間差,亦即飛行時間,以及光速來推算目標物的深度。在眾多種類的光達系統中,混沌光達系統因其傳送波強度隨時間的變化類似雜訊而能透過計算參考訊號和目標訊號的相關性來推算飛行時間,因此最為廣泛應用。然而,系統的運算複雜度會隨著偵測距離及傳送訊號的長度而增大,這現象是混沌光達系統中頗受關注的議題。因此,這個研究提出一個應用在混沌光達系統的深度感測的低複雜度演算法。本篇論文提出的演算法能在極少的表現損失下減少運算複雜度到原本演算法的百分之十五。而時差測距模組的硬體架構設計也會在本篇論文提出,此論文提出的演算法能降低硬體架構的功率消耗。
LiDAR, Light Detection and Ranging, is a remote-sensing technique applied generally to geodesy, atmospheric physics and even autonomous cars. The approach for depth- sensing of LiDAR systems is illuminating the target with laser signal and deriving the time difference, named time of flight (TOF), between the reflected signal (target signal) and the transmitted one (reference signal). Among numerical kinds of LiDAR systems, the chaotic LiDAR (CLiDAR) system is used most commonly for its noise-like wave- form beams which enable us to find the time of flight simply by correlating the target signal with the reference one. Nevertheless, the amount of computation increases with the extension of the detectable range and the length of the signal. The phenomenon is a concerned issue of CLiDAR. Therefore, the study proposed a low-complexity al- gorithm for depth sensing of CLiDAR. The proposed algorithm reduces the amount of computation to 15% of the traditional one with tiny loss of performance. The hardware of the time-of-flight calculation unit is implemented in this research, and the proposed algorithm can reduce its power consumption.
[1] M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Optical Engineering, vol. 40, no. 1, pp. 6442–6450, January 2001.
[2] G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt., vol. 41, no. 30, pp. 6442–6450, 2002.
[3] Y. Emery and C. Flesia, “Use of the a1- and the a2-sequences to modulate continuous-wave pseudorandom noise lidar,” Appl. Opt., vol. 37, no. 12, pp. 2238– 2241, 1998.
[4] C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation cw lidar using new random sequence,” Appl. Opt., vol. 29, no. 10, pp. 1466–1470, 1990.
[5] F.-Y. Lin and J.-M. Liu, “Chaotic lidar,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 991–997, September/October 2004.
[6] S. W. Smith, “The scientist and engineer’s guide to digital signal processing,” in Properties of convolution, 2nd ed. California Technical Publishing, 1999, ch. 7.
[7] J.-D. Chen, “Development of algorithms for high accuracy chaos lidar,” Master’s thesis, National Tsing Hua University, 2017.
[8] T.-C. Chen, Y.-Y. Chen, T.-C. Ma, and L.-G. Chen, “Design and implementation of cubic spline interpolation for spike sorting microsystems,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1641–1644, July 2011.
[9] R. Bartels, J. Beatty, and B. Barsky, “Hermite and cubic spline interpolation,” in An introduction to splines for use in computer graphics and geometric modeling, 1st ed. Morgan Kaufmann Publishers, 1987, ch. 3.
[10] D. E. Taylor, “Efficient implementation of cross-correlation in hardware,” Master’s thesis, Norwegian University of Science and Technology, 2014.
[11] VC707 evaluation board for the Virtex-7 FPGA, Xilinx.