簡易檢索 / 詳目顯示

研究生: 蔡鵬輝
Tsai, Peng-Hui
論文名稱: 四元無機鈣鈦礦量子點與銀奈米顆粒應用於光偵測元件表現之增益
Enhanced Performance Photodetector Based on Ag Nanoparticles / CsPbBr1.2 I1.8 Quantum Dots
指導教授: 陳力俊
Chen, Lih-Juann
口試委員: 吳文偉
Wu, Wen-Wei
鄭晃忠
Cheng, Huang-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 鈣鈦礦量子點光偵測電漿增益離心鑄造
外文關鍵詞: All inorganic perovskite, Localized surface plasmon resonance, Centrifugally-cast
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鹵化物鈣鈦礦作為光電子器件材料引起了極大的關注。無機鈣鈦礦通常具有高量子效率,長光載流子壽命和快速電荷轉移特性。通過簡便的熱注入法合成了光致發光光譜位於640 nm的CsPbBr1.2I1.8量子點。吸收光譜顯示CsPbBr1.2I1.8量子點能隙約為1.93 eV。在本研究中,製造了基於銀奈米粒子與CsPbBr1.2I1.8量子點異質結構的光電探測器。所製備的光電檢測器具有優異的性能,響應時間快和檢測率高。銀奈米粒子與入射光相互作用,銀奈米粒子的電子將隨入射光的電場振盪,產生局部表面電漿共振。銀納米粒子的局部表面電漿共振可以將光探測器的光響應提高約1.6倍。


    In recent years, halide perovskites have attracted enormous attention as promising materials for optoelectronic devices. Inorganic perovskites often have high quantum efficiency, long photocarrier lifetime and fast charge transfer. CsPbBr1.2I1.8 quantum dots with photoluminescence spectrum located at 640 nm were synthesized by a facile hot-injection method. The UV-vis absorption spectrum exhibits that the bandgap absorption is around 1.93 eV. In the present research, a photodetector based on Ag NPs/ CsPbBr1.2I1.8 QDs heterojunction was fabricated. The as-prepared photodetector had excellent performance with fast response time and high detectivity. According to the localized surface plasmon resonance (LSPR), the electrons of Ag nanoparticles will oscillate with the electric field of incident light. The LSPR of Ag nanoparticles was found to enhance the photoresponse of the photodetector by about 1.6 times.

    謝誌...i Abstract...ii 摘要...iv 目錄...v Chapter 1 Introduction...1 1.1Motivation...1 1.2Photodetector...2 1.2.1Photoconductive Effect...3 1.2.2 Photoconductor...4 1.2.3 Photodiode...4 1.3 Nanotechnology...5 1.3.1 Nanostructures...8 1.3.2 Zero-Dimensional Nanostructures...8 1.3.3 Chemical Solution Growth Mechanism of 0D Nanomaterials...9 1.3.4 Chemical Solution Growth Method...9 1.4 Inorganic Perovskite...11 1.4.1 Structure of CsPbI3...11 1.4.2 Properties of CsPbI3...12 1.5 Metal-Semiconductor Contact (MS contact)...13 1.5.1 Ohmic Contact...14 1.5.2 Schottky Contact...15 1.5.3 Metal-Semiconductor-Metal Contact Photodetector...16 1.6 Plasmonic Properties of Nanomaterials...17 1.6.1 Localized Surface Plasmon Resonance (LSPR) and Applications...17 1.6.2 Surface Plasmon Polarition (SPP) and Applications...19 1.6.3 Plasmonic Materials...20 1.7 Mechanisms of Photoresponse Plasmon Enhancement...21 Chapter 2 Experimental Procedures......24 2.1 Experimental Procedures...24 2.1.1 Synthesis Procedures of CsPbBr1.2I1.8 Quantum Dots...24 2.1.2 Synthesis Procedures of Ag Nanopartices...25 2.1.3 Fabrication of Ag NPs/CsPbBr1.2I1.8 Quantum Dots Photodetector...26 2.2 Experimental Systems and Equipments...28 2.2.1 Scanning Electron Microscope (SEM)...28 2.2.2 Field Emission – Electron Probe Micro-analyzer (FE-EPMA)...29 2.2.3 X-ray Diffraction (XRD) Analysis...30 2.2.4 Transmission Electron Microscope (TEM)...31 2.2.5 UV-Vis Spectroscopy...32 2.2.6 Photoluminescence (PL)...32 2.2.7 Atomic Force Microscope (AFM)...33 2.2.8 Electron Beam Deposition System...34 Chapter 3 Results and Discussion...35 3.1 Properties and Characteristics of CsPbBr1.2I1.8 Quantum Dots...35 3.1.1 XRD Analysis...35 3.1.2 TEM Observation...35 3.1.3 UV-Vis Absorbance Spectrum and PL Spectrum...36 3.1.4 SEM and WDS Observation of CsPbBr1.2I1.8 Quantum Dots Film...37 3.1.5 AFM Observation of CsPbBr1.2I1.8 Quantum Dots Film...38 3.2 Properties and Characteristics of Ag Nanoparticles...39 3.2.1 XRD Analysis...39 3.2.2 TEM Observation...40 3.2.3 UV-Vis Absorbance Spectrum...41 3.3 Properties and Characteristics of Ag Nanoparticles / CsPbBr1.2I1.8 Quantum Dots...42 3.3.1 Photoluminescence Measurements...42 3.3.2 UV-Vis Absorbance Measurements...43 3.3.3 AFM Analysis of Different Concentration Ag nanoparticles...44 3.4 CsPbBr1.2I1.8 Quantum Dots Photodetector...45 3.4.1 Current versus Voltage (I-V) Curves Characteristics...45 3.4.2 Photoswitching Characteristic...46 3.5 Ag nanoparticles / CsPbBr1.2I1.8 Quantum Dots Photodetector...47 3.5.1 Current versus Voltage (I-V) Curves Characteristics...48 3.5.2 Photoswitching Characteristic...49 Chapter 4 Summary and Conclusions...54 Chapter 5 Future Prospects...55 References...57

    1.Harbor Research's Internet of Things Trends Report 2016; http://harborresearch.com/wp-content/uploads/sites/8/2016/03/HRI_Mkt-Trends-Doc_29-January-2016_Final.pdf, 29-January, 2016.
    2.In Overview of the Internet of things, Global Standards Initiative on Internet of Things (IoT-GSI), International Telecommunication Union (ITU): 2013.
    3.Atzori, L.; Iera, A.; Morabito, G., The Internet of Things: A survey. Computer Networks, 2010, 54 (15), 2787-2805.
    4.Infographic: Defining the Internet of Things. Harbor Research: https://www.slideshare.net/harborresearch/harbor-researchs-infographic-on-the-internet-of-things-and-smart-services, 2014.
    5.Jianli M. and Fujun Z., Recent progress on highly sensitive perovskite photodetectors, J. Mater. Chem. C, 2019, 7, 1741-1791.
    6.Bube, R. H., Photoconductivity of solids. RE Krieger Pub. Co.:1978.
    7.Petritz, R. L., Theory of photoconductivity in semiconductor films. Physical Review 1956, 104, 1508.
    8.Frank Würthner, Generating a photocurrent on the nanometer scale. Science 2006, 314, 1693-1694.
    9.Zalewski, E. F.; Duda, C. R., Silicon photodiode device with 100% external quantum efficiency. Appl. Opt. 1983, 22, 2867-2873.
    10.Feynman, R. P., There’s plenty of room at the bottom. Eng. Sci. 1960, 23, 22-36.
    11.Taniguchi, N. On the basic concept of nanotechnology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974; pp 18-23.
    12.J. Liu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries, Angewandte Chemie International Edition. 2015, 54, 9632-9636.
    13.M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 2004, 104, 293-346.
    14.C. Koch, Top-down synthesis of nanostructured materials: mechanical and thermal processing methods, Reviews on Advanced Materials Science, 2003, 5, 91-99.
    15.W. Lu, C.M. Lieber, Nanoelectronics from the bottom up, Nature Materials, 2007, 6, 841-850.
    16.Krans, J.; Van Ruitenbeek, J; Fisum, V.; Yanson, I; De Jongh, L., The signature of conductance quantization in metallic point contacts. Nature, 1995, 375, 767-769.
    17.Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933-937.
    18.Iwan Moreels, Karel Lambert, Dries Smeets, David De Muynck, Tom Nollet, José C. Martins, Frank Vanhaecke, André Vantomme, Christophe Delerue, Guy Allan, and Zeger Hens, Size-dependent optical properties of colloidal PbS quantum dots, ACS Nano, 2009, 3, 10, 3023-3030.
    19.Wen-Tao Sun, Yuan Yu, Hua-Yong Pan, Xian-Feng Gao, Qing Chen, and Lian-Mao Peng, CdS quantum dots sensitized〖 TiO〗_2 nanotube-array photodetector, J. Am. Chem. Soc, 2008,130, 1124-1125.
    20.B. O. Dabbousi, M, G, Bawendi, O. Onitsuka, and M. F. Rubner, Electroluminescence from CdSe quantum-dot/polymer composites, Appl. Phys. Lett, 1995, 66, 1316-1318.
    21.Kurtis S. Leschkies, Ramachandran Divakar, Joysurya Basu, Emil Enache-Pommer, Janice E. Boercker, C. Barry Carter, Uwe R. Kortshagen, David J. Norris, and Eray S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic device, Nano Lett, 2007, 7, 6, 1793-1798.
    22.Olga I. Micic, Calvin J. Curtis, Kim M. Jones, Julian R. Sprague, and Arthur J. Nozik, Synthesis and characterization of InP quantum dots, J. Phys. Chem, 1994, 98, 4966-4969.
    23.A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, Photosensitization of nanoporous TiO_2 electrodes with InP quantum dots, Langmuir, 1998, 14, 12, 3153-3156.
    24.C. B. Murray, D. J Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdSe (E= S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc, 1993, 115, 8706-8715.
    25.Soon Gu Kwon, Taeghwan Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods, Small, 2011, 7, 19, 2685-2702.
    26.Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc, 2009, 131, 17, 6050-6051.
    27.G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, Inorganic cesium lead iodide perovskite solar cells, J. Mater. Chem. A, 2015, 3, 19688-19695.
    28.A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science, 2016, 354, 6308, 92-95.
    29.J. Li, L. Xu, T. Wang, J. Song, J. Song, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50‐fold EQE improvement up to 6.27% of solution‐processed all‐inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Adv. Mater, 2017, 29, 1603885-1603893.
    30.C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu, Efficient and stable white LEDs with silica‐coated inorganic perovskite quantum dots, Adv. Mater, 2016, 28, 10088-10094.
    31.Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng and H. Sun, Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals, Nano Lett, 2016, 16, 448−453.
    32.Y. Wang, X. Li, V. Nalla, H. Zeng and H. Sun, Solution‐processed low Threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals, Adv. Funct. Mater, 2017, 27, 1605088-1605094.
    33.Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanboos, A. F. Nogueira and E. H. Sargent, Efficient luminescence from perovskite quantum dot solids, ACS Appl. Mater. Interfaces, 2015, 7, 25007-25013.
    34.Zhifang Fan, S. Noor Mohammad, Wook Kim, O¨zgu¨r Aktas, Andrei E. Botchkarev and Hadis Morkoc¸, Very low resistance multilayer Ohmic contact to n-GaN, Applied Physics Letters, 1996, 68, 1672-1674.
    35.S. K. Cheung, and N. W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics, Applied Physics Letter, 1986, 49, 85-87.
    36.S.Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, ZnO schottky ultraviolet photodetectors, Journal of Crystal Growth, 2001, 225, 110-113.
    37.R. Banerjee, R. Jayakrishnan, and P. Ayyub. Effect of the Size-Induced Structural transformation on the band gap in CdS nanoparticles, Journal of Condensed Matter 2000, 12, 10647-10654.
    38.C. H. Chou, and F. C. Chen, Plasmonic Nanostructure for light trapping in organic photovoltaic device, Nanoscale 2014, 6, 8444-8458.
    39.W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Akyol, and S. B Cronin, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions, ACS Catal, 2011, 1, 929-936.
    40.S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys, 2007, 101, 093105.
    41.Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, S. Gwo, Plasmonic nanolaser using epitaxially grown silver film, Science, 2012, 337, 450-453.
    42.S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, Journal of Physics Chemistry B 1999, 103, 8410-8426.
    43.Y. Guo, H. Jia, J. Yang, H. Yin, Z. Yang, J. Wang, and B. Yang, Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C3N4 hybrid nanostructures for photocatalytic hydrogen generation, Phys. Chem. Chem. Phys, 2018, 20, 22296-22307.
    44.M. Fleischmann, P. J. Hendra, A. J. Mcquillan, Raman spectra of pyridzne adsorbed at a silver electrode, Chemical Physics Letters 1974, 26, 163-166.
    45.M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek, Plasmon-enhanced fluorescence biosensors: a review, Plasmonics, 2014, 9, 4, 781-799.
    46.Y. H. Chou, B. T. Chou, C. K. Chiang, Y. Y. Lai, C. T. Yang, H. Li, T. R. Lin, C. C. Lin, H. C. Kuo, S. C. Wang, and T. C. Lu, Ultrastrong mode confinement in ZnO surface plasmon nanolasers, ACS Nano, 2015, 9, 4, 3978-3983.
    47.J. M. Weida, H. Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu, Surface Plasmon‐enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small, 2015, 11, 20, 2392-2398.
    48.A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms, Nano Lett, 2010, 10, 1501–1505.
    49.S. W. Zeng, D. Baillargeat, H. P.Ho, K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing application. Chemical Society Reviews 2014, 43, 3426-3452.
    50.W. L. Barnes, A Dereux, T. W. Ebbesen, Surface Plasmon subwavelength optics, Nature, 2003, 424, 824-830.
    51.W. A. Murry, W. L. Barnes. Plasmonic materials, Advanced Materials, 2007, 19, 3771-3782.
    52.G. V. Naik, V. M. Shalaev, A. Boltasseva, Alternative plasmonic materals: beyond gold and silver, Advanced Materials, 2013, 25, 3264-3294.
    53.M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, Y. N. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111, 3669-3712.
    54.R. Jiang, B. Li, C. Fang, and J. Wang, Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications, Advanced Materials, 2014, 26, 5274-5309.
    55.T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, Plasmon-controlled fluorescence: beyond the intensity enhancement, Jouranl of Physical Chemistry Letters, 2012, 3, 191-202.
    56.C. Sonnichsen, T. Franzl, T. Wilk, G. V. Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods, Physical Review Letters, 2002, 88, 077402.
    57.C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles, Appl. Phys. Lett, 2011, 98, 051106.
    58.R. Shi, Y. Cao, Y. Bao, Y. Zhao, G. I. N. Waterhouse, Z. Fang, L. Z. Wu, C. H. Tung, Y. Yin, and T. Zhang, Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Advanced Materials, 2017, 29, 1700803-1700810.
    59.S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics, Nature Materials, 2005, 4, 138-142.
    60.H. Deng, D. Dong, K. Qiao, L. Bu, B. Li, D. Yang, H. Wang, Y. Cheng, Z. Zhao, J. Tang, and H. Song, Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices, Nanoscale, 2015, 7, 4163-4170.
    61.H. Xia, J. Li, W. Sun, and L. Peng, Organohalide lead perovskite based photodetectors with much enhanced performance, Chem. Commun, 2014, 50, 13695-13697.
    62.Y. Zhou, J. Luo, Y. Zhao, C. Ge, C. Wang, L. Gao, C. Zhang, M. Hu, G. Niu, and Jiang Tang, Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI_3 nanowires, Adv. Optical Mater, 2018, 6, 1800679-1800684.
    63.K. A. Parrey, A. Aziz, S. G. Ansari, S. H. Mir, A. Khosla, and A. Niaz, Synthesis and Characterization of an efficient hole-conductor free halide perovskite CH3NH3PbI3 semiconductor absorber based photovoltaic device for IOT, Journal of The Electrochemical Society, 2018, 165, 8, B3023-B3029.
    64.C. Y. Chen, J. H. Chang, K. M. Chiang. H. L. Lin, S. Y. Hsiao, and H. W. Lin, Perovskite photovoltaics for dim‐light applications, Adv. Funct. Mater, 2015, 25, 7064-7070.
    65.S.Seth, T. Ahmed, A. De, and A. Samanta, Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals, ACS Energy Lett, 2019, 4, 1610-1618.

    QR CODE