研究生: |
林裕翔 Lin, Yu Hsiang |
---|---|
論文名稱: |
利用色散遞增光纖產生頻譜壓縮雙峰與特性分析 Generation and Analysis of Dual-Peaked Laser Spectral Compression Using a Dispersion-Increasing Fiber |
指導教授: |
黃承彬
Huang, Chen Bin |
口試委員: |
賴暎杰
施宙聰 黃承彬 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 光孤子 、頻譜壓縮 、非線性效應 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射光頻譜壓縮藉由能量在頻譜上的重新分佈,達到增加頻譜亮度,亦即頻譜訊雜比之目的,有助於提升飛秒雷射和超連續光頻譜的應用及發展性。本論文使用線性色散遞增光纖,透過絕熱系統下光孤子脈衝壓縮的反向操作達到頻譜壓縮。
然而,近年來有關頻譜壓縮的研究仍局限於頻譜上存在單一高峰的範疇。本論文成功地利用色散遞增光纖產生頻譜壓縮雙峰,且頻譜雙峰的特性,包括相對振幅及波長得以透過雷射源的平均功率、入射脈衝啁啾的條件調整並做分析。比對以飛秒鎖模脈衝為雷射源所量測到的實驗結果與透過非線性薛丁格方程式的數學模型所計算的數值模擬結果,兩者具有非常好的相似性。
Femtosecond lasers and optical supercontinua offer wide optical bandwidths but at the same time suffer from low spectral brightness. One solution is to perform external laser spectral compression. Our approach for spectral compression is using a linear ramp dispersion-increasing fiber (DIF), which is reverse processes of adiabatic soliton temporal compression.
However, to date, laser spectral compressions have been limited in generating a single output spectrally compressed peak. We demonstrate the generation of spectrally compressed spectrum with dual peaks. Moreover, the relative amplitudes and wavelengths of the two spectral peaks are adjustable through the average power, input pulse chirp condition. The experimental results are compared to simulations and are found in excellent agreements.
[1] R. H. Stolen, and Chinlon Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[2] S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18, 699 (1993).
[3] M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017 (1993).
[4] B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25, 445 (2000).
[5] J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191 (2002).
[6] J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, F. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30, 714 (2005)
[7] E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30, 2025 (2005).
[8] D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugžlys, E. E. Serebryannikov, A. Baltuška, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16, 2502 (2008).
[9] A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34, 662 (2009).
[10] E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transoform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36, 707 (2011).
[11] N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express 18, 11700 (2010).
[12] H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36, 2848 (2011).
[13] W.-T. Chao, Y.-Y. Lin, J.-L. Peng, and C.-B. Huang, “Waveform-dependent laser spectral compression through pulse propagation in a dispersion-increasing fiber,” Opt. Lett. 39, 853 (2014).
[14] A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[15] S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am.B 8, 1633 (1991).
[16] C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding," Optics Express, vol. 16, pp. 2520-2527, Feb 18 2008.
[17] B. E. A. S. M. C. Teich, Fundamentals of Photonics: Wiley, 1991.
[18] M. Erkintalo, G. Genty and John M. Dudley, “Experimental signatures of dispersive waves emitted during soliton collisions,” Optics Express, vol, 18, pp. 13379, June 21 2010.