研究生: |
陳佳政 Chia-Cheng Chen |
---|---|
論文名稱: |
整合型細胞操控晶片之研發 Design and Fabrication of a Cell-Lab. on a Chip |
指導教授: |
許宗雄
Tzong-Hsiung Hseu 劉承賢 Cheng-Hsien Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 生物技術 、微機電系統 、介電泳力 、細胞操控 、電融合 |
外文關鍵詞: | Biotechnology, MEMS, DEP force, Cell manipulation, Electrofusion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於生物科技(Biotechnology)的快速發展,很多困難的生物問題也已經被解決了。但是發展生物科技是需要相當多的金錢及時間,若能發展微系統的工具,將有助於提升生物研究的效率。幸好微機電系統(MEMS)提供了可能的機會,由於其尺寸與生物樣品相當,所以對於生醫領域的研究上有著相當大的幫助。因此,在過去的幾年間,已經有很多生物樣品分離、定位、收集及分析的裝置被呈現,像可動式元件、光學鑷夾、磁性操控、微夾子…等等。然而,這些裝置往往不是只有單一功能就是製程過於複雜且昂貴。故在本實驗中,我們的目標在於簡化這些複雜的製程並將不同功能的裝置整合在同一個晶片上,像分離、定位及分類的裝置,並利用介電泳力(DEP force)去操控生物樣品。
在我們的研究中,我們先對過去的文獻做探討,之後再使用CFD-RC軟體分析其可行性,並將整體的概念用微機電製程來實現,皆下來再利用聚苯乙烯粒子(Polystyrene beads)與生物細胞去驗證此晶片的功能,最後再分析我們的設計及實驗結果。
Recently, with the development of biotechnology, many difficult problems of the bio-fields have been resolved. However, the development of biotechnology usually costs money and takes much time to go through required biochemical process. Hence, the development of micro-system tools could help speed up the experimal progress and save much unnecessary waste, because the scale fits to the size of the biological molecules and cells. The MEMS (Micro-Electrical-Mechanical-System) technique provides a possible opportunity to produce the various devices which can be used to separate, position and analyze the bio-molecules. In the past, many groups have reported a variety of different devices to manipulate the bio-sample, such as optical tweezers, magnetic tweezers, and microgripper and so on. However, these devices are usually either large size or complicated fabrication process. Here, we integrate several different components in the single device and use the dielectrophoretical (DEP) force to manipulate the target bio-sample.
In this thesis, we start with the survey of literatures. Then, by using the CFD-RC software, we simulate the results of our device. The integrated device is fabricated via the MEMS technique. Finally, we evaluate the functions of our device by using the polystyrene beads and biological cells and report the experimental results.
[1] H. Chronis and L. P. Lee, "Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution," J. Microelectromech. Syst., pp. 1-7, 2005.
[2] S. Vankrunkelsven, D. Clicq, K. Pappaert, W. Ranson, C. De Tandt, H. Ottevaere, H. Thienpont, G. V. Baron, and G. Desmet, "A novel microstep device for the size separation of cells," Electrophoresis, vol. 25, pp. 1714-22, 2004.
[3] Y. Huang and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," Sens. Actuators, A, vol. 104, pp. 205-212, 2003.
[4] N. G. Green, A. Ramos, and H. Morgan, "Ac electrokinetics: a survey of sub-micrometre particle dynamics," J. Phys. D: Appl. Phys., vol. 33, pp. 632-641, 2000.
[5] T. Schnelle, T. MuK ller, and G. Fuhr, "Trapping in AC octode field cages," J. Electrostatics, vol. 50, pp. 17-29, 2000.
[6] M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat Biotechnol, vol. 23, pp. 83-7, 2005.
[7] C. C. Chen, S. Zappe, O. Sahin, X. J. Zhang, M. Fish, M. Scott, and O. Solgaard, "Design and operation of a microfluidic sorter for Drosophila embryos," Sens. Actuators, B, vol. 102, pp. 59-66, 2004.
[8] S. Masuda, M. Washizu, T. Nanba, "Novel Method of Cell Fusion in Field Constriction Area in Fluid Integrated Circuit," IEEE TRANSACTIONS ON INDUSTRY APPLICATION, vol. 25, pp. 732-737, 1989.
[9] A. Stromberg, F. Ryttsen, D. T. Chiu, M. Davidson, P. S. Eriksson, C. F. Wilson, O. Orwar, and R. N. Zare, "Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion," Proc Natl Acad Sci U S A, vol. 97, pp. 7-11, 2000.
[10] G. Tresset and S. Takeuchi, "A Microfluidic Device for Electrofusion of Biological Membranes," Proceeding of IEEE International Micro Electro Mechanical Systems (MEMS '04), pp. 25-28, 2004.
[11] A. Stromberg, A. Karlsson, F. Ryttsen, M. Davidson, D. T. Chiu, and O. Orwar, "Microfluidic device for combinatorial fusion of liposomes and cells," Anal Chem, vol. 73, pp. 126-30, 2001.
[12] P. K. Wong, T. H. Wang, J. H. Deval, and C. M. Ho, "Electrokinetics in Micro Devices for Biotechnology Applications," IEEE/ASME TRANSACTIONS ON MECHATRONICS, vol. 9, pp. 366-376, 2004.
[13] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, pp. 1973-83, 2002.
[14] M. P. Hughes, "AC electrokinetics: applications for nanotechnology," Nanotechnology, pp. 124-132, 2000.
[15] N. G. Green and H. Morgan, "Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces," J. Phys. D: Appl. Phys., vol. 31, pp. 25-30, 1998.
[16] http://sujudy.1001.com.tw/judy/judy/3rd/content/eke/chap2/theory.htm
[17] http://life.nthu.edu.tw/~b830327/cell2.html
[18] http://en.wikipedia.org/wiki/Cell
[19] http://cellscienceproject.tripod.com/scienceproject/id6.html
[20] http://www.tmd.ac.jp/artsci/biol/textbook/profile.htm
[21] U. Zimmermann and J. Vienken, "Electric Field-Induced Cell-to-Cell Fusion," J. Membrane Biol., vol. 67, pp. 165-182, 1982.
[22] U. Zimmermann, "ELECTRIC FIELD-MEDIATED FUSION AND RELATED ELECTRICAL PHENOMENA," Biochimica et Biophysica Acta, vol. 694, pp. 227-277, 1982.
[23] U. Zimmermann, P. Scheurich, G. Pilwat, and R. Benz, "Cells with Manipulated Functions: New Perspectives for Cell Biology, Medicine, and Technology," Angew. Chem. Int. Ed. Engl., vol. 20, pp. 325-344, 1981.
[24] G. H. Markx and C. L. Davey, "The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology," Enz. Microb. Technol., vol. 25, pp. 161-171, 1999.
[25] M. P. Hughes, "Nanoelectromechanics in Engineering and Biology", LRC press, 2003.
[26] Y. Polevaya, I. Ermolina, M. Schlesinger, B. Z. Ginzburg, and Y. Feldman, "Time domain dielectric spectroscopy study of human cells Ⅱ. Normal and malignant white blood cells," Biochimica et Biophysica Acta, vol. 1419, pp. 257-271, 1999.
[27] T. B. Jones, "Basic theory of dielectrophoresis and electrorotation," IEEE Eng Med Biol Mag, vol. 22, pp. 33-42, 2003.
[28] F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. Gascoyne, "Separation of human breast cancer cells from blood by differential dielectric affinity," Proc Natl Acad Sci U S A, vol. 92, pp. 860-4, 1995.
[29] S. Lippert and J. Gimsa, "High resolution measurements of dielectric cell properties by a combination of AC-electrokinetic effects," AC-electrokinetics of ellipsoidal objects.
[30] R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol, vol. 15, pp. 426-32, 1997.
[31] X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Mark, and R. Pethig, "Selective dielectrophoretic confinement of bioparticles in potential energy wells," J. Phys. D: Appl. Phys., vol. 26, pp. 1278-1285, 1993.
[32] K. L. Chan, N. G. Green, M. P. Hughes, and H. Morgan, "CELLULAR CHARACTERISATION AND SEPARATION: DIELECTROPHORETICALLY ACTIVATED CELL SORTIN (DACS)," Proceedings of the 20th Annual International Conference of the ZEEE Engineering in Medicine and Biology Society, vol. 20, pp. 2953-2956, 1998.
[33] K. S. Heard, N. Fidyk, and A. Carruthers, "ATP-dependent substrate occlusion by the human erythrocyte sugar transporter," Biochemistry, vol. 39, pp. 3005-14, 2000.
[34] Y. Hayashi, L. Livshits, A. Caduff, and Y. Feldman, "Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes," J. Phys. D: Appl. Phys., vol. 36, pp. 369-374, 2003.