簡易檢索 / 詳目顯示

研究生: 張啟新
論文名稱: 金屬(鋁)/氧化鉿/矽薄膜電容器電流機制與可靠度分析
The Conduction Mechanism and the Reliability Properties of Metal(Al)/HfO2/Si Capacitors
指導教授: 李雅明
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鉿電容器依時性介電層崩潰
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,金屬(Al )/氧化鉿(HfO2)/半導體(p-Si)結構的電容器成功地被製作,HfO2薄膜使用射頻磁控濺鍍法沈積。並對元件作基本的變溫電性量測,溫度範圍在77 K至465 K,並充分討論漏電流機制。結果顯示在累積區偏壓為1 V時漏電流約為10-6 A/cm2,介電常數為14.00,溫度範圍在498 K以上,所得到的結果顯示在低電場( 1.0 MV/cm),得Al/HfO2界面的電流傳導機制為蕭基發射所主導。溫度在77 K時,所得到的結果顯示在高電場( 1.4 MV/cm), 電流傳導機制為佛勒-諾德翰穿隧所主導,並可利用蕭基發射及佛勒-諾德翰穿隧分析的結果求得在氧化鉿薄膜中電子的有效質量為0.9 m0 (等效厚度分別為3.9 奈米(nm)) ,並可得到鋁/氧化鉿的位障高為1.03 eV。至於物性分析方面,我們也作了二次離子質譜儀縱深分佈分析、X光繞射分析。
    同時也分析其可靠度發現可靠度參數韋布斜率為2.5比起等效厚度的二氧化矽有較好的表現,且運用得到的韋布斜率可用來預測大面積0.1 cm2和小面積10-6 cm2的依時性介電層崩潰時間及10年的操作電壓。由高電場去預測低電場則使用E model 所得到的結果面積小的電容器有較長的生命期,且3.81□ 10-4 cm2的電容在-2.17 V電壓下可存活10年,而10.2□10-4 cm2的電容在-1.3 V電壓下可存活10年。再本實驗中,發現當所施加的應力越大時負電荷捕陷 的現象就顯現的越多。


    Metal-insulator-semiconductor (MIS) capacitors that incorporate HfO2 with physical thickness of 14.0 nm gate dielectrics were fabricated by RF magnetron sputtering. The show that the dominant mechanisms are Schottky emission at high temperatures (>498 K) in low electric fields (<1 MV/cm). The dynamic dielectric constant (□r) is close to 3.57 from the slope of Schottky plots. The extracted Al/HfO2 barrier-height and effective electronic mass in HfO2 films are about 1.03 eV and 0.9 m0. The study shows the area scaling and the voltage dependence of the time to breakdown TBD. The fraction of breakdown devices F is plotted on a Weibull scale. The Weibull fit of our data shows clearly that TBD scales with area, meaning that the breakdown sites are randomly distributed. The Weibull slope β of the breakdown for both the area dependence and the time to dielectric breakdown distribution was found to be β = 2.5. Estimated ten year lifetime has been projected to be -2.24 V.

    第一章 緒論---------------------------------------------------------------------------1 1.1 高介電常數 (High-□□□薄膜於極大型積體電路 (ULSI) 的應用 與發展-------------------------------------------------------------------------------1 1.2高介電常數薄膜在電容器閘極氧化層的應用--------------------------------1 1.3氧化鉿薄膜的製備方法-----------------------------------------------------------2 1.4高介電常數薄膜於場效電晶體閘極氧化層的發展--------------------------3 1.5 本論文的研究方向----------------------------------------------------------------4 第二章 氧化鉿薄膜元件的製備---------------------------------------------5 2.1 射頻磁控濺鍍法 (RF magnetron sputtering)的簡介-------------------------5 2.2 歐姆接面 (Ohmic contact) 的製備---------------------------------------------5 2.3 氧化鉿薄膜的成長----------------------------------------------------------------6 2.4 氧化鉿薄膜電容器的製備-------------------------------------------------------7 2.5 氧化鉿薄膜電晶體的製備-------------------------------------------------------7 2.6 量測儀器以及實驗儀器介紹----------------------------------------------------9 2.7 蝕刻上遭遇到的問題------------------------------------------------------------10 第三章 氧化鉿薄膜基本介紹及物性分析--------------------------------12 3.1 氧化鉿薄膜的基本介紹---------------------------------------------------------12 3.2 二次離子質譜儀縱深分佈之分析---------------------------------------------12 3.3 X-ray 繞射分析-------------------------------------------------------------------14 第四章 鋁/氧化鉿/矽電容器基本電性及漏電流機制分析--------15 4.1 電容-電壓 (C-V) 特性曲線量測---------------------------------------------15 4.2 電流-電壓 (I-V) 特性曲線量測----------------------------------------------15 4.3 漏電流傳導機制之簡介---------------------------------------------------------16 4.3.1 蕭基發射 (Schottky emission)------------------------------------------17 4.3.2 普爾-法蘭克發射 (Poole-Frenkel emission)--------------------------18 4.3.3 佛勒-諾德翰穿隧 (Fowler-Nordheim tunneling)---------------------19 4.4金屬/絕緣層/矽結構電容器與溫度變化之漏電流傳導機制分析--------------------------------------------------------------------------------------------19 4.5 本章結論---------------------------------------------------------------------------23 第五章 鋁/氧化鉿/矽可靠度及應力導致漏電流分析---------------24 5.1 崩潰及電應力導致漏電流的特性探討---------------------------------------24 5.2韋布分佈及韋布斜率(Weibull slope)的探討--------------------------------25 5.3依時性介電崩潰的分析----------------------------------------------------------29 第六章 鋁/氧化鉿/矽場效電晶體基本電性量測----------------------32 6.1 IDS-VDS曲線的特性探討---------------------------------------------------------32 6.2 IDS-VGS曲線的特性探討---------------------------------------------------------32 6.3次臨界斜率(subthreshold slope)---------------------------------------------33 第七章 結論-------------------------------------------------------------------------35 參考資料------------------------------------------------------------------------------37 實驗圖表------------------------------------------------------------------------------42 附錄-------------------------------------------------------------------------------------88 射頻磁控濺鍍法操作步驟-----------------------------------------------------------88

    References

    [1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, August 1996.
    [2] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gated dielectric application,” in IEDM Tech. Dig., pp. 133-136, 1999.
    [3] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, no. 4, pp. 181-183, April 2000.
    [4] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
    [5] G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, no. 19, pp. 2854-2856, May 1999.
    [6] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-□ dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002.
    [7] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current transport in metal/hafnium oxide/silicon structure,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 97-99, February 2002.
    [8] Z. Xu, M. Houssa, S. D. Gendt, and M. Heyns, “Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1975-1977, March 2002.
    [9] H. Kim, A. Marshall, and P. C. Mclntyre, “Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies,” Appl. Phys. Lett., vol. 84, no. 12, pp. 2064-2066, March 2004.
    [10] B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing,” Appl. Phys. Lett., vol. 80, no. 13, pp. 2368-2370, April 2002.
    [11] D. A. Neumayer and E. Cariter, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001.
    [12] H. Lee, S. Jeon, and H. Hwang, “Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2615-2617, October 2001.
    [13] A. Callegari, E. Cariter, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films,” J. Appl. Phys., vol. 90, no. 12, pp. 6466-6475, December 2001.
    [14] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer thin HfO2 gate dielectric with n+-polysilicon gate,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 44-45, 2000.
    [15] S. J. Lee, S. J. Rhee, R. Clark and D. L. Kwong, “Reliability projection and polarity dependence of TDDB for ultra thin CVD HfO2 gate dielectrics,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 78-79, 2002.
    [16] S.J. Lee, H.F. Luan, C.H. Lee, T.S. Jeon, W.P. Bai, Y. Senzaki, D. Roberts and D.L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 133-134, 2001.
    [17] R. Choi, C.S. Kang, B.H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J. C. Lee., “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 15-16, 2001.
    [18] J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai and P. J. Tobin, “Thermodynamic stability of high-□ dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol.80, pp. 1897-1899, 2002.
    [19] P.D. Kirsch, C.S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100),” J. Appl. Phys., vol. 91, no. 7, pp. 4353-4363, April 2002.
    [20] Y. M. Lee and C. M. Lai, “Handbook of thin films material,” edited by H. S. Nalwa, vol. 3: Ferroelectric and Dielectric Thin Films.
    [21] T. Ma, S. Campbell, R. Smith, N. Hoilien, B. He, W. Gladfelter, C. Hobbs, D. Buchanan, M. Gribelyuk, M. Tiner, M. Coppel, and J. J. Lee, “Group IVB metal oxide high permittivity gate insulators deposited from anhydrous metal nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001.
    [22] K. Onishi, L. Kang, R. Choi, E. Dharmarajan, S. Gopalan, J. Yongjoo, S. K. Chang, H. L. Byoung, R. Nieh, and J. C. Lee, “Dopant penetration effects on polysilicon gate HfO2 MOSFET’s,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 131-132, 2001.
    [23] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H.R. Huff, E. Shero, C. Pomarede, M. Givans, M. Mazanez, and C. Werkhoven, “Conventional n-channel MOSFET device using single layer HfO2 and ZrO2 as high-□ gate dielectrics with polysilicon gate electrode,” in IEDM Tech. Dig., pp. 455-458, 2001.
    [24] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport,” in IEDM Tech. Dig., pp. 463-466, 2001.
    [25] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 651-654, 2001.
    [26] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J. C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” in IEDM Tech. Dig., pp. 655-658, 2001.
    [27] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, E. Dharmarajan, and J. C. Lee, “Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET’s,” in IEDM Tech. Dig., pp. 659-662, 2001.
    [28] M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from Organo-Hafnium compounds,” Thin Solid Films, vol. 41, pp. 247- 259, August 1997.
    [29] C. H. Choi, T. S. Jeon, R. Clark, and D. L. Kwong, “Electrical properties and thermal stability of HfxOy gate dielectric with poly-Si gate electrode,” IEEE Electron Device Lett., vol. 24, pp. 215-217, April 2003.
    [30] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys. vol. 87, pp. 484-492, January 2000.
    [31] K. P. Bastos, J. Morais, L. Miotti, R. P. Pezzi, G. V. Soares, I. J. R. Baumvol, R. I. Hegde, H. H. Tseng, and P. J. Tobin, “Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2,” Appl. Phys. Lett., vol. 81, pp. 1669-1671, August 2002.
    [32] M. Cho, H. B. Park, J. Park, and C. S. Hwang, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic- layer deposition,” J. Appl. Phys., vol. 81, pp. 472-474, July 2002.
    [33] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates,” Appl. Phys. Lett., vol. 94, pp. 2563-2571, August 2003.
    [34] S. M. Sze, “Physics of Semiconductor Device,” 2nd ed.,Wiley, New York, 1981.
    [35] D. K. Schroder, “Semiconductor material and device characteristics,” Wiley, Arizona, 1998.
    [36] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278-283, September 1969.
    [37] Y. T. Hou, M. F. Li, H. Y. Yu, and D. L. Kwong, “Modeling of tunneling currents through HfO2 and (HfO2)x(Al2O3)1-x gate stacks,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 96-98, February 2003.
    [38] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET carrier mobility model based on gate oxide thickness, threshold voltage and gate voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996.
    [39] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, no. 11, pp. 9298-9300, June 2003.
    [40] 賴志明,應用於金氧半電晶體閘極氧化層的氧化鉭薄膜電性之研究,國立清華大學博士論文,民國九十年六月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE