簡易檢索 / 詳目顯示

研究生: 陳家正
Chia-Chung Chan
論文名稱: 可接受珈瑪壽命樣本改善之研究
Modified Acceptance Sampling on Gamma Lifetime
指導教授: 黃提源 教授
Dr. Tea-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 43
中文關鍵詞: 改善可接受樣本珈瑪分配壽命
外文關鍵詞: Modified, Acceptance Sampling, Gamma, Lifetime
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在已知壽命服從珈瑪分配(gamma distribution)的情況下,利用新的參數估計量(NMME),在不同的信心水準之下,對於不同的可接受失敗個數、不同的測試時間內,使用伯努力不等式(binomial inequality)來找出最小的樣本個數(minimum sample size)。


    Abstract
    In this paper, the gamma distribution is assumed as a model for lifetime data. The problem of acceptance sampling when the life test is truncated at a preassigned time is discussed. New minimum sample sizes to assure the specified mean life, for various acceptance numbers, various confidence levels, and various values of the ratio of the fixed experiment time to specified mean life are derived by using new parameter estimator.

    Abstract………………………………………………………………………………1 1.Introduction………………………………………………………………………...1 2.The estimation of parameters for the gamma distribution……………………...3 3.The method of sampling plans…………………………………………………...10 4.Comparisons between two estimators by simulation…………………………...12 5.Empirical data…………………………………………………………………….14 TableⅠ.……………………………………………………………………………16 TableⅡ.……………………………………………………………………………20 TableⅢ…………………………………………………………………………….24 TableⅣ.……………………………………………………………………………28 TableⅤ…………………………………………………………………………….32 TableⅥ…………………………………………………………………………….36 TableⅦ…………………………………………………………………………….40 TableⅧ…………………………………………………………………………….41 Reference………………………………………………………………………….42

    REFERENCES
    [1] Bowman, K. O. and Shenton, L. R. (1968). Properties of estimators for the gamma distribution, CTC-1, Computing Technology Center, UCCND.
    [2] Cramer, H. (1946). Mathematical Methods of statistics, Princeton University Press, p.348.
    [3] Epstein, B. (1954). Truncated life tests in the exponential case, Annals of Mathematical Statistics, 25,555-64.
    [4] Epstein, B,. and Sobel, M. (1954). Some theorems relevant to life testing from an exponential distribution, Annals of Mathematical Statistics, 25, 373-81
    [5] Epstein, B,. and Tsao, C. K. (1953). Some tests based on ordered observations from two exponential populations, Annals of Mathematical Statistics, 24, 458-66
    [6] Fisher, F. A. (1941). On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions Royal Society, Series A, 222, 309-368.
    [7] Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood, Technometrics, 2, 55-65.
    [8] Goode, Henry P. and Kao, John H. K., Sampling plans based on the Weibull distribution, Proceedings of Seventh National Symposium on Reliability and Quality Control. Philadelphia, Pennsylvania, January 1961,24-40
    [9] Hastings C., Jr; J. T. Hayward; AND J. P. Wong, JR. (1955). Approximations for digital computers.p155-163 Princeton Univ. Press, etc.
    [10] Hater, H. L., and A.H. Moore (1965). Maximum likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples. Technometrics, 7, 639-643.
    [11] Hwang, T. Y. and Hu, C. Y. (1999). On a characterization of the gamma distribution : The independence of the sample mean and the sample coefficient of Variation , Annals of the Institute of Statistics Mathematics , 51 , 749-753 , Japan .
    [12] Hwang, T. Y. and Hu, C. Y. (2000). On some characterization of population distribution , Taiwanese Journal of Mathematics, 4, 3, 427-437, ROC.
    [13] Lawless J. F. (1982). Statistical Models and Methods for Lifetime Data.
    [14] M. Masuyama, and Y. Kuroiwa. (1951). Table of the Likelihood Solutions of Gamma Distribution and its Medical Applications, Statistical Application Research, 1, 1.
    [15]Norlund, Niels Erik. (1924) Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. "Literaturverzeichnis": p. [464]-531
    [16] Sobel, M. and Tischendorf, J. A. (1959). “Acceptance sampling with new life test objectives,” Proceedings of Fifth National Symposium on Reliability and Quality Control. Philadelphia, Pennsylvania, January, 108-18
    [17] Gupta, S. S and A. Groll, P. A. (1961). Gamma distribution in acceptance sampling based on life tests. Journal of the American Statistical Association, 56, 942-970.
    [18] Thom, Herbert C. S.(1958). A Note on the Gamma Distribution, Monthly Weather Review, 86, 4, 117-122. Office of Climatology, U.S Weather, Washington, D.C.
    [19] Wilk, M. B., R. Gnanadesikan, and M. J. Huyett (1962). Estimation of parameters of the gamma distribution using order statistics. Biometrika, 49,525-545. Printed in Great Britain, Bell Telephone Laboratories Incorporated, Murray, New Jersey.
    [20] Shih-Tai Kao (2000). On the probability model of the failure time for the air conditioning system, Master Thesis, Institute of Statistics, National Tsing Hua University, Taiwan.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE