簡易檢索 / 詳目顯示

研究生: 許維辰
論文名稱: 探討以溶膠凝膠法合成之部分取代LiNi1-xFexPO4、LiMn1-xCoxPO4 正極材料及其電性表現
Investigation of electrical performance of LiNi1-xFexPO4 and LiMn1-xCoxPO4 cathode material prepared through sol gel synthesis
指導教授: 蔡哲正
口試委員: 林居南
顏光甫
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 磷酸鋰鹽溶膠凝膠法鋰電池正極材料
外文關鍵詞: LiNiPO4, LiMnPO4, sol-gel method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討對橄欖石結構的磷酸鋰鎳、磷酸鋰錳材料進行部分之過渡金屬取代。實驗採用溶膠凝膠法,並透過調整在溶膠階段的藥品添加比例,能夠成功合成出LiNi1-xFexPO4 、LiMn1-xCoxPO4。電性測試分兩部份進行,第一部份為鐵取代之磷酸鋰鎳材料,第二部分為鈷取代之磷酸鋰錳材料。
    在第一部份,歸納磷酸鋰鎳的XRD、電性測試結果以及現有之文獻資料,此材料目前的問題在於脫鋰後的NiPO4並不是一穩定存在相,導致觀察不到放電平台。
    在第二部分,實驗的合成參數經過調整,能找出一組電性表現最佳的,優化的參數其首圈放電容量為98 mAh/g,20圈後的電容量能維持首圈的86.7 %。
    實驗另外嘗試以Li4Zn(PO4)2材料作為導離子的添加物,在碳包覆步驟加入,散佈在碳層中,能進一步改善電性。透過此方法改善的LiMn1-xCoxPO4材料,其首圈放電容量為132.8 mAh/g。


    目錄 第一章 緒論 1 1.1能源市場 1 1.2鋰離子電池工作原理 3 1.3正極材料 4 1.4合成方式 7 1.5研究動機 8 第二章 文獻回顧 9 2.1磷酸鋰鹽 9 2.1.1電性表現 11 2.1.2電性改良 17 2.1.3材料顆粒奈米化 17 2.1.4表面修飾 17 2.1.5體相取代 18 2.2電解液 22 第三章 實驗步驟 25 3.1部分置換之磷酸鋰鎳、磷酸鋰錳合成 25 3.1.1 溶膠凝膠法製備LiNixFe1-xPO4 25 3.1.2溶膠凝膠法製備LiMnxCo1-xPO4 27 3.2碳包覆 28 3.3電極製備 29 3.4電解液 30 3.5電池組裝 30 3.6循環伏安法測試 31 3.7循環壽命測試 31 3.8掃描式電子顯微鏡 32 3.9 X光繞射分析 32 3.10熱重/熱差分析儀 32 3.11 交流阻抗分析 33 第四章 結果與討論 34 4.1 sol gel合成LiNixFe1-xPO4 34 4.1.1 預燒溫度、時間對材料結晶性影響 34 4.1.2 表面形貌 36 4.1.3 電性結果 38 4.1.4 充放電前後相鑑定 44 4.2 sol gel合成LiMnxCo1-xPO4 45 4.2.1 pH值對LiMnxCo1-xPO4影響 45 4.2.2預燒時間改變之影響 49 4.2.3 Co取代量影響 55 4.2.4添加Li4Zn(PO4)2 58 第五章 結論 66 5.1部分鐵置換之磷酸鋰鎳合成 66 5.2部分鈷置換之磷酸鋰錳合成 67 第六章 參考文獻 68

    1. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
    2. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854.
    3. Molenda, J. and M. Molenda, Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System. Metal, Ceramic and Polymeric Composites for Various Uses. 2011.
    4. Kraytsberg, A. and Y. Ein-Eli, Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(8): p. 922-939.
    5. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
    6. Julien, C.M., et al., Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics, 2012. 18(7): p. 625-633.
    7. Zhang, Y., et al., Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 2012. 162(13-14): p. 1315-1326.
    8. Lee, S.B., et al., Synthesis of LiFePO4 material with improved cycling performance under harsh conditions. Electrochemistry Communications, 2008. 10(9): p. 1219-1221.
    9. Yang, G., et al., The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). Journal of Power Sources, 2011. 196(10): p. 4747-4755.
    10. Fisher, C.A.J., V.M.H. Prieto, and M.S. Islam, Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chemistry of Materials, 2008. 20(18): p. 5907-5915.
    11. Rommel, S.M., et al., Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatshefte für Chemie - Chemical Monthly, 2014. 145(3): p. 385-404.
    12. Allen, J.L., T.R. Jow, and J. Wolfenstine, Improved cycle life of Fe-substituted LiCoPO4. Journal of Power Sources, 2011. 196(20): p. 8656-8661.
    13. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
    14. Dimesso, L., C. Spanheimer, and W. Jaegermann, Investigation on graphitic carbon foams – LiNiyPO4 (y = 0.8–1.0) composites. Solid State Sciences, 2012. 14(9): p. 1372-1377.
    15. Qing, R., et al., Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries. Electrochimica Acta, 2013. 108: p. 827-832.
    16. Prabu, M. and S. Selvasekarapandian, Dielectric and modulus studies of LiNiPO4. Materials Chemistry and Physics, 2012. 134(1): p. 366-370.
    17. Prabu, M., et al., Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics, 2011. 17(3): p. 201-207.
    18. Prabu, M., et al., Influence of europium doping on conductivity of LiNiPO4. Transactions of Nonferrous Metals Society of China, 2012. 22(2): p. 342-347.
    19. Gangulibabu, et al., CAM sol–gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries. Journal of Sol-Gel Science and Technology, 2008. 49(2): p. 137-144.
    20. Angaiah, S., et al., Process for preparation of olivine lithium nickel phosphate composite, Council Sci&Ind Res India (Coui-C).
    21. Yang, J. and J.J. Xu, Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO[sub 4] (M=Fe, Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route. Journal of The Electrochemical Society, 2006. 153(4): p. A716.
    22. Kandhasamy, S., A. Pandey, and M. Minakshi, Polyvinylpyrrolidone assisted sol–gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochimica Acta, 2012. 60: p. 170-176.
    23. Minakshi, M., et al., LiNiPO4 Aqueous Rechargeable Battery, in Batteries and Energy Technology, M.C. Smart, et al., Editors. 2011, Electrochemical Society Inc: Pennington. p. 281-292.
    24. Zhang, S., et al., Synthesis and Characterization of LiMnPO4 Nanoparticles Prepared by a Citric Acid Assisted Sol-Gel Method. International Journal of Electrochemical Science, 2013. 8(5): p. 6603-6609.
    25. Wu, X., et al., Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface. Journal of Materials Chemistry A, 2014. 2(4): p. 1006.
    26. Pivko, M., et al., Synthesis of Nanometric LiMnPO4via a Two-Step Technique. Chemistry of Materials, 2012. 24(6): p. 1041-1047.
    27. Li, H. and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun (Camb), 2012. 48(9): p. 1201-17.
    28. Zhang, L.-L., et al., High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012. 513: p. 414-419.
    29. Minakshi, M., et al., Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis. Ionics, 2012. 18(6): p. 583-590.
    30. Dimesso, L., C. Spanheimer, and W. Jaegermann, Effect of the Mg-substitution on the graphitic carbon foams—LiNi1−yMgyPO4 composites as possible cathodes materials for 5V applications. Materials Research Bulletin, 2013. 48(2): p. 559-565.
    31. Li, B.Z., et al., Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. Journal of Power Sources, 2013. 232: p. 12-16.
    32. Ye, F., et al., Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties. Journal of Power Sources, 2014. 253: p. 143-149.
    33. Liu, J., W. Liao, and A. Yu, Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite. Journal of Alloys and Compounds, 2014. 587: p. 133-137.
    34. Cui, Y.-T., et al., Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method. Journal of Power Sources, 2014. 249: p. 42-47.
    35. Zong, J. and X. Liu, Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochimica Acta, 2014. 116: p. 9-18.
    36. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
    37. Xiang, J., et al., High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. Journal of Power Sources, 2013. 233: p. 115-120.
    38. Aravindan, V., et al., Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4. Journal of the Electrochemical Society, 2012. 159(9): p. A1435-A1439.
    39. Xing, L.Y., et al., Improved cyclic performances of LiCoPO4/C cathode materials for high-cell-potential lithium-ion batteries with thiophene as an electrolyte additive. Electrochimica Acta, 2012. 59: p. 172-178.
    40. Tarnopolskiy, V., et al., Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. Journal of Power Sources, 2013. 236: p. 39-46.
    41. Hu, M., et al., Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. Journal of Applied Electrochemistry, 2012. 42(5): p. 291-296.
    42. Xu, M., et al., Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries. Electrochemistry Communications, 2012. 18: p. 123-126.
    43. Mi-ying, J., S. Xiu-qin, and C. Ru-fen, 柠檬酸盐溶胶-凝胶法合成. 材料科学与工程, 2000.Vo 1 . 1 8 No . 1
    44. Tan, G., et al., Coralline Glassy Lithium Phosphate-Coated LiFePO4Cathodes with Improved Power Capability for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(12): p. 6013-6021.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE