簡易檢索 / 詳目顯示

研究生: 曾庭郁
Tseng, Ting Yu
論文名稱: 鐵電氧化鉿鋯應用於矽/矽鍺堆疊之Ω閘極電晶體和反相器之研究
Investigation of Ferroelectric Hf0.5Zr0.5O2 of Si/ Si0.8Ge0.2 Super-Lattice Omega-Gate FET and Inverter
指導教授: 吳永俊
Wu, Yung-Chun
口試委員: 羅廣禮
Luo, Guang-Li
朱鵬維
Jhu, Pen-Gwei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 氧化鉿鋯鐵電特性應力矽高遷移率通道矽與矽鍺堆疊通道低功耗元件
外文關鍵詞: HZO, Ferroelectric, Strain, StrainSi, Si/SiGe, OmegaFET
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用具鐵電性質的氧化鉿鋯薄膜(HZO)作為閘極介電層的材料,並以超晶格矽/矽鍺堆疊作為通道。由於鐵電材料的自發性極化現象所產生的負電容效應將有望於突破傳統電晶體的次臨界擺幅之物理極限,而氧化鉿鋯除了具有在低膜厚下展現出高鐵電性之特性外,其材料本身也具有高介電常數,能夠提高驅動電流、降低閘極漏電流。並且使用矽/矽鍺超晶格堆疊通道,藉由應變矽技術、高品質超晶格磊晶通道和高遷移率材料,將進一步提升電晶體之驅動電流,此垂直之堆疊通道以及Ω閘極電晶體,以上皆更利於應用於未來電晶體尺寸之微縮。
    第一部分為金屬-絕緣層-半導體結構之電容,其絕緣層分別以氧化鉿鋯及二氧化鉿作為比較,比較在不同退火溫度下所展現出的電性。於退火溫度550°C下、退火30秒時,將展現出最佳之鐵電特性,具有最高之殘餘極化量、最大的記憶窗口,並克服更低溫下絕緣層結晶性不佳,及矽鍺層在更高溫下擴散的問題。
    第二部分為鐵電矽/矽鍺堆疊之Ω閘極電晶體之研究。分別以氧化鉿鋯和二氧化鉿,應用在矽/矽鍺堆疊之Ω閘極電晶體的閘極氧化層上,以作為有無具鐵電性質之比較,發現具有鐵電性之閘極氧化層的電晶體,將會有更高的開關電流比為1.97×107、更低的平均次臨界擺幅71.1 mV/dec。除此之外,也分別以N, P型的鐵電矽/矽鍺堆疊之Ω閘極電晶體,模擬CMOS(互補式金屬氧化物半導體)反相器測量VTC曲線和電壓增益,可以發現其良好的反相器特性曲線,及極佳的電壓增益值111.4 (V/V),這歸因於N, P型的鐵電矽/矽鍺堆疊之Ω閘極電晶體有對稱的臨界電壓。
    以上結果證實,將鐵電材料應用在矽/矽鍺堆疊之Omega閘極電晶體的閘極氧化層上,將會大幅提高開關電流比、降低次臨界擺幅,展現出極出色的表現,加上良好的反相器特性以及二氧化鉿基材料與現今CMOS製程極高的相容性,使其對於在未來超低功耗電路應用上具有相當高的潛力。


    In this study, a ferroelectric Hf0.5Zr0.5O2 thin film was used as the gate dielectric layer, and a superlattice Si/ Si0.8Ge0.2 stack was used as the channel. The negative capacitance effect generated by the spontaneous polarization phenomenon of the ferroelectric material is expected to break through the physical limit of the subthreshold swing of traditional transistors. In addition to exhibiting high ferroelectric properties at low film thickness, Hf0.5Zr0.5O2 also has a high dielectric constant, which can increase the drive current and reduce gate leakage current. Furthermore, the use of a Si/ Si0.8Ge0.2 superlattice stack channel, through strain engineering, high-quality superlattice epitaxial channels, and high-mobility materials, will further enhance the transistor's drive current. The vertical stack channel and Omega gate transistor are also more suitable for application in the future shrinking of transistor size.
    In the first part, the capacitor structure of metal-insulator-semiconductor with Hf0.5Zr0.5O2 and HfO2 as insulator layers is compared in terms of electrical properties exhibited under different annealing temperatures. It is found that annealing at 550°C for 30 seconds exhibits the best ferroelectric characteristics, with the highest remanent polarization, the largest memory window, and overcoming the poor crystallinity of the insulating layer at lower temperatures and the diffusion of silicon-germanium layer at higher temperatures.
    The second part studies the Ω-gate transistor of ferroelectric Si/ Si0.8Ge0.2 stack. Hf0.5Zr0.5O2 and HfO2 are respectively applied to the gate oxide layer of omega-gate transistors in Si/ Si0.8Ge0.2 stack for comparison of ferroelectric properties. It is found that transistors with ferroelectric gate oxide layer have a higher ION/IOFF of 1.97×107 and a lower average S.S. of 71.1 mV/dec. In addition, N and P-type ferroelectric Si/ Si0.8Ge0.2 stack omega-gate transistors are respectively simulated for measuring the inverter voltage transfer characteristic of the CMOS inverter and voltage gain The good inverter characteristic curve and excellent voltage gain value of 111.4 (V/V) are attributed to the symmetrical threshold voltage of n and P-type ferroelectric Si/ Si0.8Ge0.2 stack omega-gate transistors.
    The above results confirm that applying ferroelectric materials to the gate oxide layer of Si/ Si0.8Ge0.2 stacked omega gate transistors can significantly increase ION/IOFF, reduce subthreshold swing, and exhibit outstanding performance. In addition, the good inverter characteristics and the excellent compatibility of the hafnium dioxide substrate with current CMOS processes make it highly potential for future ultra-low power circuit applications.

    摘要 iii Abstract v 致謝 vii 目錄 viii 圖目錄 x 第一章 緒論 1 1.1 摩爾定律 (Moore's law) 1 1.2 Ω閘極電晶體 (Omega-gate Field-Effect-Transistor) 4 1.3 高載子遷移率通道 (High mobility channel material) 5 1.4 矽鍺/矽堆疊通道(Stack Silicon-Germanium/ Si channel) 7 1.5 鐵電二氧化鉿基材料(Ferroelectric HfO2 based material) 10 1.6 實驗動機 (Motivation) 15 1.7 論文架構 (Paper Organization) 19 第二章 機制探討 21 2.1 應變矽原理 (Principle of Strained Silicon) 21 2.2 鐵電特性 (Ferroelectric properties) 26 2.3 負電容現象 (Negative capacitance effect) 30 第三章 鐵電氧化鉿鋯應用於矽/矽鍺堆疊之MIS電容 33 3.1 製程步驟 (Device Fabrication) 33 3.2 材料分析 (Material Analysis) 37 3.3 電性分析 (Electric Characteristics Analysis) 41 第四章 鐵電氧化鉿鋯應用於矽/矽鍺堆疊之Ω閘極電晶體及反相器 45 4.1 製程步驟 (Device Fabrication) 45 4.2 材料分析 (Material Analysis) 49 4.3 電性分析 (Electric Characteristics Analysis) 50 4.4 TCAD模擬矽鍺/矽堆疊鰭式電晶體 (TCAD Simulation of SiGe/ Si SL FinFET) 56 第五章 結論 61 參考文獻 62

    [1] G. E. Moore, "Cramming more components onto integrated circuits," ed: McGraw-Hill New York, 1965.
    [2] M. Neisser, "International roadmap for devices and systems lithography roadmap," Journal of Micro/Nanopatterning, Materials, and Metrology, vol. 20, no. 4, pp. 044601-044601, 2021.
    [3] T. W. Group, "The International Roadmap for Devices and Systems: 2020," Executive Summary. Technical report, Institute of Electrical and Electronics …, 2020.
    [4] K. J. Kuhn, "Considerations for ultimate CMOS scaling," IEEE transactions on Electron Devices, vol. 59, no. 7, pp. 1813-1828, 2012.
    [5] C. Marquez, "Electrical Characterization of Reliability in Advanced Silicon-On-Insulator Structures for sub-22nm Technologies," PhD thesis. Mar. 2017. DOI: 10.13140/RG. 2.2. 34719.56489.
    [6] C.-Y. Huang, "III-V Ultra-Thin-Body InGaAs/InAs MOSFETs for Low Standby Power Logic Applications," 2015.
    [7] G. Sun, Y. Sun, T. Nishida, and S. E. Thompson, "Hole mobility in silicon inversion layers: Stress and surface orientation," Journal of Applied Physics, vol. 102, no. 8, p. 084501, 2007.
    [8] S. Thompson et al., "A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1/spl mu/m/sup 2/SRAM cell," in Digest. International Electron Devices Meeting, 2002: IEEE, pp. 61-64.
    [9] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, "Strain: A solution for higher carrier mobility in nanoscale MOSFETs," Annual Review of Materials Research, vol. 39, pp. 203-229, 2009.
    [10] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011.
    [11] S. Barabash, "Prediction of new metastable HfO _ 2 HfO 2 phases: toward understanding ferro-and antiferroelectric films," Journal of Computational Electronics, vol. 16, pp. 1227-1235, 2017.
    [12] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf 0.5 Zr 0.5 O 2 thin films: A review of recent advances," Jom, vol. 71, pp. 246-255, 2019.
    [13] T. Olsen et al., "Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties," Applied Physics Letters, vol. 101, no. 8, 2012, doi: 10.1063/1.4747209.
    [14] S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, "Ferroelectricity in Gd-doped HfO2 thin films," ECS Journal of Solid State Science and Technology, vol. 1, no. 6, p. N123, 2012.
    [15] H. A. Hsain et al., "Many routes to ferroelectric HfO2: A review of current deposition methods," Journal of Vacuum Science & Technology A, vol. 40, no. 1, 2021, doi: 10.1116/6.0001317.
    [16] J. Muller et al., "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.
    [17] P. Gargini, F. Balestra, and Y. Hayashi, "Roadmapping of nanoelectronics for the new electronics industry," Applied Sciences, vol. 12, no. 1, p. 308, 2022.
    [18] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano letters, vol. 8, no. 2, pp. 405-410, 2008.
    [19] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [20] M. Hoffmann et al., "Stabilizing the ferroelectric phase in doped hafnium oxide," Journal of Applied Physics, vol. 118, no. 7, p. 072006, 2015.
    [21] Y. Li et al., "Four-Period Vertically Stacked SiGe/Si Channel FinFET Fabrication and Its Electrical Characteristics," Nanomaterials, vol. 11, no. 7, p. 1689, 2021. [Online]. Available: https://www.mdpi.com/2079-4991/11/7/1689.
    [22] Z. Zhang, J. Pan, J. Zhang, and E. Tok, "Kinetics of Ge diffusion, desorption and pit formation dynamics during annealing of Si 0.8 Ge 0.2/Si (001) virtual substrates," Physical Chemistry Chemical Physics, vol. 12, no. 26, pp. 7171-7183, 2010.
    [23] Y.-W. Lin et al., "Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor," Applied Physics Letters, vol. 117, no. 26, p. 262109, 2020.
    [24] D. Bolton, E. Nelson, B. Taylor, and I. Weatherall, "Thermal balance in infants," Journal of Applied Physiology, vol. 80, no. 6, pp. 2234-2242, 1996.
    [25] G. Wang, Investigation on SiGe selective epitaxy for source and drain engineering in 22 nm CMOS technology node and beyond. Springer Nature, 2019.
    [26] S. M. Turkane and A. H. Ansari, "Performance analysis of TFET using Si0. 35Ge0. 65/Si Hetero-junction Hetero-dielectric with buried oxide layer," in 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN), 2018: IEEE, pp. 91-97.
    [27] L. Khiangte and R. S. Dhar, "Development of Tri-Layered s-Si/s-SiGe/s-Si Channel Heterostructure-on-Insulator MOSFET for Enhanced Drive Current," physica status solidi (b), vol. 255, no. 8, p. 1800034, 2018, doi: https://doi.org/10.1002/pssb.201800034.
    [28] D. Fu, K. Suzuki, K. Kato, M. Minakata, and H. Suzuki, "Investigation of domain switching and retention in oriented PbZr0. 3Ti0. 7O3 thin film by scanning force microscopy," Japanese journal of applied physics, vol. 41, no. 11S, p. 6724, 2002.
    [29] A. Areef Billah, "Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication," 2016.
    [30] L. Jin, F. Li, and S. Zhang, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures," Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014, doi: https://doi.org/10.1111/jace.12773.
    [31] M. Gupta and E. W. W. Leong, Microwaves and metals. John Wiley & Sons, 2008.
    [32] N. H. Ismail and M. Mustapha, "A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications," Polymer Engineering & Science, vol. 58, no. S1, pp. E36-E63, 2018.
    [33] H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance," IEEE Access, vol. 6, pp. 52754-52765, 2018, doi: 10.1109/access.2018.2870916.
    [34] M. A. Alam, "A Tutorial Introduction to Negative Capacitor Field Effect Transistors: Perspective on the Road Ahead," nanoHUB. org, 2015.

    QR CODE