簡易檢索 / 詳目顯示

研究生: 黃家翰
Huang, Chia-han
論文名稱: 應用於可攜式發電機的新型多重模式線性鋰離子電池充電器
A New Multi-mode Li-ion Battery Charger for Portable Generators Application
指導教授: 徐永珍
Hsu, Yung-Jane
口試委員: 江雨龍
江炫樟
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 可攜式發電機鋰離子電池充電器定電壓定電流線性充電器
外文關鍵詞: Portable generator, Li-ion charger, Constant voltage, Constant current, Linear charger
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文呈現一個應用於可攜式發電機的新型多重模式線性鋰離子電池充電器。由於鋰離子電池本身特性的關係,一般傳統充電器都會採用三個階段的充電模式:依序為小電流充電、大電流充電以及定電壓充電,也因為定電流充電的關係,充電器無法在定電流充電模式下改變自身的充電電流。然而可攜式發電機為一個不穩定的功率來源,如果可攜式發電機提供過多的功率輸出而使得後端充電器沒辦法消耗的話,這些多餘的能量會全部浪費在前端的可攜式發電機中,因此本論文將傳統的系統改良成應用於可攜式發電機的新型多重模式線性鋰離子電池充電器,此系統可以動態的偵測浪費在前端可攜式發電機中的電流,並轉換這些浪費掉的電流成為充電電流,充電器也會因為減少了這些無法吸收的電流進而提升整體的充電效率。 本論文使用TSMC 0.35 □m CMOS 2P4M標準製程來實現充電器晶片,量測結果顯示:如果用可攜式發電機提供電源的話,使用本充電器來進行充電會使充電效率從32.3%增加到55%。


    This thesis presents a new multi-mode linear Li-ion battery charger for portable generators application. Traditionally, based on the physical properties of the battery cell, charger circuits charge cells with three modes, which are the trickle current mode (TC), the constant current mode (CC), and the constant voltage (CV) mode. In the constant current mode, the charging current of chargers is fixed. However, the portable generator provides varying output power to the charger. If the portable generator provides too much power that the charger IC cannot handle and pass on, the excess power can only be wasted in the portable generator itself. In this thesis, the new multi-mode Li-ion battery charger for portable generators application can dynamically detect the charging output current of the portable generator and efficiently convert the current into the charging current. Compared with the original CC mode operation, the charger in this work can improve the power efficiency. The IC was fabricated in TSMC 0.35 □m CMOS technology. The experiment shows that the power efficiency can be improved from 32.3% to 55%.

    摘要 i Abstract ii 誌謝 iii 索引 iv 附圖索引 viiiii 附表索引 xii 第一章 緒論 1 1-1. 研究動機 1 1-2. 相關研究發展 2 1-3. 論文組織 3 第二章 鋰離子電池的基本原理與介紹 5 2-1. 鋰離子電池(Lithium-Ion Battery)的概論介紹[6] 5 2-2. 鋰離子電池的構造與化學反應 [7-9] 6 2-3. 鋰離子電池容量的描述 [10] 8 2-4. 鋰離子電池充電方法與充電曲線 9 2-4-1. 鋰離子電池充電和放電的安全性問題[7] [8] 9 2-4-2. 定電壓(Constant Voltage CV)充電法[7] [8] 10 2-4-3. 定電流(Constant Current CC)充電法[7] [8] 10 2-4-4. 定電流切換定電壓充電法[3] 11 第三章 多重模式線性鋰離子電池充電器理論 13 3-1. 前言 13 3-2. 類比切換式多重模式線性鋰離子電池充電器[3] 13 3-3. 數位切換式多重模式鋰離子電池線性鋰離子電池充電器[4] 15 3-4. 線性鋰離子電池充電器的缺點[3] 16 3-5. 切換式電源加上線性鋰離子電池充電器[3] 17 3-6. 類比切換及數位切換線性鋰離子電池充電器比較 19 3-7. 新型數位切換多重模式線性鋰離子電池充電器 20 第四章 應用於可攜式發電機之充電系統 25 4-1. 應用於可攜式發電機的充電策略 25 4-2. 應用於可攜式發電機的充電系統架構 26 4-3. 鋰離子電池的理想模型 28 4-4. 可攜式發電機實驗 28 4-4-1. 人手擺動的輸出力道實驗 29 4-4-2. 發電機輸出功率實驗 30 4-5. 穩壓整流器 32 4-6. 新型多重模式的線性鋰離子電池充電器 32 4-6-1. 雙級運算放大器(Two-stage amplifier)[11] 32 4-6-2. 比較器(comparator)[12] 34 4-6-3. 應用於可攜式發電機充電系統的效率理論 35 4-7. 邏輯控制電路 36 4-8. 參考電壓產生器 38 4-9. 訊號抬升電路與線性放大電路 40 第五章 晶片佈局以及電路模擬 42 5-1. 帶差電壓產生電路&電壓緩衝器 42 5-1-1. 帶差電壓產生電路&電壓緩衝器的佈局考量 42 5-1-2. 帶差電壓產生電路&電壓緩衝器電路模擬 43 5-2. 訊號抬升電路與線性放大電路 46 5-2-1. 訊號抬升電路與線性放大電路佈局考量 46 5-2-2. 訊號抬升電路與線性放大電路模擬 46 5-3. 比較器 47 5-3-1. 比較器佈局考量 47 5-3-2. 比較器電路模擬 48 5-4. 新型數位控制多重模式線性鋰離子電池充電器 49 5-4-1. 雙級運算放大器(Av&Gm&Avm) 49 5-4-2. 定電流模式與定電壓模式穩定度分析 51 5-5. 可攜式發電機充電電路系統 53 5-5-1. 可攜式發電機充電電路系統佈局考量 53 5-5-2. 可攜式發電機充電電路系統模擬 55 5-5-3. 模擬規格表 58 第六章 量測結果與討論 59 6-1. 測試板 59 6-2. 量測環境 60 6-3. 量測結果 63 6-3-1. 外接元件 63 6-3-2. 帶差電壓產生器 64 6-3-3. 訊號抬升電路與線性放大電路 65 6-3-4. 旅充模式 66 6-3-5. 手拉式發電機模式 68 6-4. 可攜式發電機模式震盪問題的討論 75 第七章 結論與後續研究建議 79 7-1. 結論 79 7-2. 後續研究建議 80 參考文獻 81

    [1] C.-S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for acontactless electric vehicle battery charger,” IEEE Trans. Ind. Electron.,vol. 52, no. 5, pp. 1308–1314, Oct. 2005.

    [2] Y. S. Hwang, C. C. Wang, F. C. Yang, and J. J. Chen, “New compact CMOS Li–Ion battery charger using charge-pump technique for portable applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4,pp. 705–712, Apr. 2007.

    [3] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li–Ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs,vol. 53, no. 11, pp. 1180–1184, Nov. 2006.

    [4] Jiann-Jong Chen, Fong-Cheng Yang, Chien-Chih Lai, Yuh-Shyan Hwang, and Ren-Guey Lee, “A High-Efficiency Multimode Li–Ion Battery Charger With Variable Current Source and Controlling Previous-Stage Supply Voltage,” IEEE Trans. on Industrial Electronics, vol. 56, no.4 pp.2469 - 2478, July 2009.

    [5] Chia-Hsiang Lin, Chun-Yu Hsieh, and Ke-Horng Chen, “A Li-Ion Battery Charger With Smooth Control Circuit and Built-In Resistance Compensator for Achieving Stable and Fast Charging,” IEEE Trans. On Circuits and Systems I, Reg. Papers,, vol. 57, no.2, pp.506 - 517, February 2010

    [6] 國家科學委員會網站
    http://web1.nsc.gov.tw/ct.aspx?xItem=7853&ctNode=40&mp=1

    [7] 王柏崴,機器人之智慧型充電站與電源管理,成功大學工程科學研究所,民國九十七年七月

    [8] 王昱權,PWM/PFM 雙模式排程鋰離子電池充電控制器之設計,朝陽科技大學資訊工程系,民國九十七年七月

    [9] By Analog device “Designer's Guide to Charging Li-Ion Batteries”

    [10] By Scott Dearborn “Charging Li-ion Batteries for Maximum Run Times” ,Power Electronics Technology ,April 2005

    [11] Behzad Razavi. “Design of analog CMOS integrated circuit” The McGraw-Hill Companies, Inc,2001

    [12] Phillip E.Allen,Douglas R. Holberg“CMOS Analog Circuit Design”
    New York Oxford OXFORD UNIVERSITY PRESS 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE