簡易檢索 / 詳目顯示

研究生: 李瑞森
Ruei-Sen Li
論文名稱: 建立於透鏡像差模擬之系統性變異及其在路徑延遲估測的應用
Systematic Variation Model Extraction Based on Lens-Aberration Simulation and its Application to Path Delay Estimation
指導教授: 劉靖家
Jing-Jia Liou
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 透鏡像差系統性變異
外文關鍵詞: lens aberration, systematic variation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程的不斷進步,線幅的關鍵尺寸(Critical Dimension, CD)不斷地縮小,使得製程中所產生的製程變異之影響也愈加的重要。製程變異又可分為隨機變異(random variation)以及系統性變異(systematic variation),然而當中隨機變異是無法預測及避免的,了解系統性變異的發生原因及探討其對電路效能的影響,對於提高製程良率和改善電路設計將有很大的幫助。
    光學微影製程是半導體製程中最主要的製程步驟,影響關鍵尺寸大小的最關鍵技術,而當中所產生的系統性變異也將更直接的影響到線幅寬度的大小,產生所謂的關鍵尺寸變異(CD variation)。由於光學微影系統的不斷演進,使用越來越高的數值口徑(numerical aperture, NA),來增加影像的解析度,並且使用大面積的照射,使得透鏡中所存在的透鏡像差之影響不能在被忽略,在這篇論文中,我們將介紹光學微影製程中幾個較為重要的系統性變異,例如:光阻劑塗佈(resist coating)、耀光(flare)、光罩偏差(mask error)、透鏡像差(lens aberration),並且探討透鏡像差對於整個關鍵尺寸變異的影響,因為,不同的透鏡像差對於不同的光罩圖形(layout pattern)會有不同的影響 [1],我們利用Silvaco公司所提供的Athena軟體來模擬關鍵尺寸受到透鏡像差的微影結果,進而萃取出系統性變異的模型,最後,我們將利用它來估測出電路關鍵電路延遲的變化及其對於電路效能的影響。


    As the developments of semiconductor process technology continue to improve, process variations
    affect the circuit performance significantly. The problem of lens aberrations in lithography system
    cannot be neglected, and especially today’s lithography systems use high NA to push the technology
    node to 90nm or smaller one. It means that light travels the large portion of lens, so lens
    aberration effect is more significant [1]. Systematic Variations in optical lithography have many
    sources, such as mask error, flare and lens aberration, and the lens aberrations effect become more
    and more important among them in recent years. In this thesis, we introduce various systematic
    variations in optical lithography and focus on the phenomenon of lens aberrations effect. We use
    the lithography simulator, Athena, to simulate the results that lens aberrations affect the different
    test structures and then extract the CD contour maps. We model these systematic variations by
    the statistic multiple regression and use these models to estimate the path delay. We propose a
    framework to estimate the critical path delay of circuit affected by lens aberrations and observe the
    impact of lens aberration on circuit performance.

    1 Introduction 8 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Optical Lithography Background 10 2.1 Flow of the Optical Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Resist Coating Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Exposure Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Post Exposure Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Develop and Etch Process . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Main Optical Lithographic Parameters . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Numerical Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Contrast of Aerial Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Degree of Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.4 Depth of Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Sources of CD Variation in Optical Lithography 19 3.1 Resist Coating Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 3.2 Lens Aberration Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Flare Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Mask Error Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Post Exposure Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 A Framework for Analysis of the Circuit Performance due to Lens Aberrations 27 4.1 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Simulation of Systematic CD Variation due to Lens Aberrations . . . . . . . . . . 29 4.3 Systematic CD Variation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Analysis of the Circuit Performance . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Experimental Results 36 5.1 Simulation Result of Lithography Simulator . . . . . . . . . . . . . . . . . . . . . 36 5.2 Results of Systematic Variation Model . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Experiment Result of Analysis of the Circuit Performance . . . . . . . . . . . . . 50 6 Conclusion and Future Work 57 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    [1] T.A. Brunner, “Impact of lens aberrations on optical lithography,” IBM Journal of Research
    and Development, pp. 57–67, 1997.
    [2] D. S. Boning and J. E. Chung, “Statistical metrology: understanding spatial variation in
    semiconductor manufacturing,” in Proc. SPIE Vol. 2874, p. 16-26, Microelectronic Manufacturing
    Yield, Reliability, and Failure Analysis II, Ali Keshavarzi; Sharad Prasad; Hans-Dieter
    Hartmann; Eds., A. Keshavarzi, S. Prasad, and H.-D. Hartmann, Eds., Sept. 1996, pp. 16–26.
    [3] A.B. Kahng, Chul-Hong Park, Sharma P., and QinkeWang, “Lens Aberration-Aware Timing-
    Driven Placement,” Proceedings of Design, Automation and Test in Europe, pp. 1–6, 2006.
    [4] Michael Orshansky, Linda Milor, Pinhong Chen, Kurt Keutzer, and Chenming Hu, “Impact of
    Systematic Spatial Intra-Chip Gate Length Variability on Performance of High-Speed Digital
    Circuits,” Proceedings of IEEE/ACM International Conference on Computer-Aided Design,
    pp. 62–67, 2000.
    [5] M. Orshansky, L. Milor, and C. Hu, “Characterization of spatial intrafield gate CD variability,
    its impact on circuit performance, and spatial mask-level correction,” IEEE Transactions on
    Semiconductor Manufacturing, pp. 2–11, Feb. 2004.
    [6] M. Orshansky, L. Milor, L. Nguyen, G. Hill, Y. Peng, and C. Hu, “Intra-field gate CD
    variability and its impact on circuit performance,” International Electron Devices Meeting,
    pp. 479–482, 1999.
    [7] Amir BORNA, Chris PROGLER, and David BLAAUW, “Correlation analysis of CDvariation
    and circuit performance under multiple sources of variability,” Design and Process
    Integration for Microelectronic Manufacturing III, pp. 168–177, May 2005.
    [8] Pei yang Yan, Qi-De Qian, and Joseph C. Langston, “Effect of lens aberration on obliqueillumination
    stepper system,” Proc. of SPIE, pp. 167–180, Aug. 1993.
    [9] Regina T. Schmidt, Chris A. Spence, Luigi Capodieci, Zoran Krivokapic, Bernd Geh, and
    Donis G. Flagello, “Impact of coma on CD control for multiphase PSM designs,” Proc. of
    SPIE, pp. 15–24, June 1998.
    [10] Peter Dirksen, Casper A. H. Juffermans, Rudy J. M. Pellens, Mireille Maenhoudt, and Peter
    De Bisschop, “Novel aberration monitor for optical lithography,” Proc. of SPIE, pp.
    77–86, July 1999.
    [11] D. G. Flagello, J. de Klerk, G. Davies, R. Rogoff, B. Geh, M. Arnz, U. Wegmann, and
    M. Kraemer, “Toward a comprehensive control of full-field image quality in optical photolithography,”
    in Proc. SPIE Vol. 3051, p. 672-685, Optical Microlithography X, Gene E.
    Fuller; Ed., G. E. Fuller, Ed., July 1997, pp. 672–685.
    [12] Stephen P. Renwick, “Flare and its effects on imaging,” Proc. of SPIE, pp. 442–450, May
    2004.
    [13] Chris A. Mack, “Measuring and modeling flare in optical lithography,” Proc. of SPIE, pp.
    151–161, June 2003.
    [14] A. Bourov, L. C. Litt, and L. Zavyalova, “Impact of flare on CD variation for 248-nm and
    193-nm lithography systems,” Proc. of SPIE, pp. 1388–1393, Sept. 2001.
    [15] Christof G. Krautschik, Masaaki Ito, Iwao Nishiyama, and Shinji Okazaki, “Impact of EUV
    light scatter on CD control as a result of mask density changes,” Proc. of SPIE, pp. 289–301,
    July 2002.
    [16] Franklin M. Schellenberg, JamesWord, and Olivier Toublan, “Layout compensation for EUV
    flare,” Proc. of SPIE, pp. 320–329, May 2005.
    [17] E. Barouch, U. Hollerbach, S. A. Orszag, M. C. Peckerar, and M. Rebbert, “Simulation
    fidelity in microlithography,” in Proc. SPIE Vol. 1671, p. 31-56, Electron-Beam, X-Ray,
    and Ion-Beam Submicrometer Lithographies for Manufacturing II, Martin C. Peckerar; Ed.,
    M. C. Peckerar, Ed., July 1992, pp. 31–56.
    [18] M. Cheng and A. R. Neureuther, “Effects of residual aberrations on line-end shortening in
    193-nm lithography,” in Proc. SPIE Vol. 4691, p. 1421-1432, Optical Microlithography XV,
    Anthony Yen; Ed., A. Yen, Ed., July 2002, pp. 1421–1432.
    [19] B. Vleeming, B. Heskamp, H. Bakker, L. Verstappen, J. Finders, J. Stoeten, R. Boerret,
    and O. Roempp, “ArF step-and-scan system with 0.75 NA for the 0.10um node,” in Proc.
    SPIE Vol. 4346, p. 634-650, Optical Microlithography XIV, Christopher J. Progler; Ed., C. J.
    Progler, Ed., Sept. 2001, pp. 634–650.
    [20] K. Chen and C. Hu, “Performance and Vdd scaling in deep submicrometer CMOS,” IEEE J.
    Solid-State Circ., pp. 1586–1589, Oct. 1998.
    [21] K. Chen, C. Hu, P. Fang, M.R. Lin, and D.L. Wollesen, “Predicting CMOS speed with gate
    oxide and voltage scaling andinterconnect loading effects,” IEEE Trans. Electron Devices,
    pp. 1951–1957, Nov. 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE