簡易檢索 / 詳目顯示

研究生: 葉佳偉
Yeh Chia Wei
論文名稱: 開發結合神經滋養因子梯度與許旺氏細胞的微米圖貌培養裝置應用於神經組織工程
Development of micro-patterned device incorporated with neurotrophic gradient and supportive Schwann cells for the applications in neural tissue engineering
指導教授: 王子威
Wang Tzu Wei
口試委員: 王潔
Wang Jane
蔡金吳
Tsai Jin Wu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 83
中文關鍵詞: 軸突引導微米圖貌神經滋養因子梯度許旺氏細胞
外文關鍵詞: Axonal guidance, micro-patterned surface, neurotrophic gradient, Schwann cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊神經受損是由於周邊神經纖維以及其結締組織受損而造成周邊神經永久性功能喪失。近年來,人工神經導管被廣泛地開發作為周邊神經受損的替代療法,中空管狀型的結構可用來引導受損的神經沿著管壁從受損近端往遠端生長,進而重新連接受損神經,使其回復原本之功能性。然而,人工神經導管缺乏完整之細胞外基質以及支持性的神經膠細胞,因此神經再生修復的結果仍然不是相當完好。而新型的人工神經導管則開始加入不同的刺激因子,如物理性之方向性引導、化學性之神經滋養因子引導以及生物性之支持細胞引導等促進周邊神經之修復再生以及功能性回復。
    本研究中利用生物可降解高分子, poly(glycerol-co-sebacic acid) (PGS),作為培養裝置基材,並且結合三重刺激因子:1) 微米尺度的方向性圖貌作為物理性引導;2) 神經生長因子濃度梯度之明膠薄膜作為化學性引導;3) 同時培養重要神經膠細胞,許旺氏細胞作為生物性之內源性支持以及引導,探討已分化之神經幹細胞之軸突生長情形 (方向引導、軸突生長速度以及長度),進而應用於新型神經導管之開發。結果顯示利用雷射剝蝕系統可以在PGS上剝蝕出具方向性之微米圖貌,並且神經細胞可以貼附在較大的圓形區域內,並且神經軸突有沿通道方向延伸的情形。許旺氏細胞則從成功地從大鼠坐骨神經中分離出來,藉由免疫螢光染色以及流式細胞儀分析,兩種許旺氏細胞的特異性蛋白,s-100β以及p75 low affinity receptor of nerve growth factor 均有大量的表現,證實許旺氏細胞可以在體外培養且具有原表現型,而與許旺氏細胞共培養之神經幹細胞亦會朝神經細胞分化成熟。此外,我們也成功製作出具有神經滋養因子濃度梯度分布之明膠薄膜,且神經軸突在神經滋養子高濃度區域的生長情形有明顯的提升。


    The current gold standard treatment in clinic for peripheral nerve injury is autologous nerve graft. Although there is no immune response after graft and complete extracellular matrix and Schwann cells are preserved in the nerve tissue, limited amount of available nerve and possible neuroma formation accompanied with permanent functional loss at donor site are the main concerns. In these years, the nerve guidance conduit has been developed as an alternative way to repair peripheral nerve. However, without incorporating proper stimulating factors, the prognosis is still not very satisfied.
    In this study, a biodegradable polymer (poly (glycerol-co-sebacic acid), PGS) based novel device has been developed and characterized. By incorporating three stimulating factors: 1) micro-patterned surface, that can directionally guide the axon as physical cue; 2) neurotrophic gradient membrane, that can continually attract axon outgrowth from the proximal to distal stump as chemical cue; 3) Schwann cells, that can support the growth of neurite and form myelin sheath around axon as biological cue, we expect that this scaffold can be used as a promising nerve guidance conduit for peripheral nerve regeneration. The results showed that the micro-patterned surface with specific dimensions of channels and chambers can be fabricated with good uniformity. Attachment and extension of differentiated neuron cells were observed in larger chamber area. The directional extension of neurite along direction of channel were also observed. By immunocytochemistry and flow cytometry, strong expression of s-100β and p75 low affinity receptor of nerve growth factor can be observed, indicating that Schwann cells can be successfully obtained from rat sciatic nerve and maintained their phenotype under in vitro culture environment. When co-culturing Schwann cells with neural stem cells, neural stem cells will differentiate toward neuronal cells. The gradient distribution of nerve growth factor 7S on gelatin membrane was successfully achieved. Significant enhancement of neurite area/field and length/field were also observed in higher concentration of NGF gelatin segment.

    中文摘要 3 Abstract 5 Chapter 1. Introduction 15 1.1 Peripheral nerve injury and self-repair mechanism 15 1.2 Clinic treatment for PNI 18 1.3 Nerve guidance conduit 19 1.4 Stimulation factors 21 1.5 A biodegradable polymer: poly (glycerol-co-sebacic acid) (PGS) 24 1.6 Motivation and objective of this study 25 Chapter 2. Literature Reviews 27 2.1 The development of nerve guidance conduit 27 2.1.1 Non-biodegradable NGC 28 2.1.2 Biodegradable NGC 28 2.1.3 Biodegradable NGC with external stimulating factors 29 Chapter 3. Theoretical basis 36 3.1 Neurotrophic guidance and haptotaxis 36 3.2 Topographic guidance 38 Chapter 4. Materials and Methods 40 4.1 Materials (list) 40 4.2 Instrument (list) 41 4.3 Experimental design 41 4.4 Synthesis of poly (glycerol-co-sebacic acid) (PGS) 42 4.5 Ablation of micro-pattern on the PGS surface 42 4.6 Characterization of PGS 43 4.6.1 Inspection of micro-patterned PGS surface by scanning electron microscope 43 4.6.2 Surface property test of PGS 43 4.6.3 Degradation test of PGS 43 4.6.4 Tensile test of PGS 44 4.7 Oxygen plasma pre-treatment on PGS 44 4.8 Harvest of Schwann cells 45 4.9 Cell culture of neural stem cells (NSCs) 46 4.10 Characterization of Schwann cells and neural stem cells 46 4.10.1 Immunocytochemistry staining 46 4.10.2 Flow cytometry 47 4.11 Inspection of Schwann cells and neuron cells on micro-patterned PGS surface 48 4.12 Purification of microbial Transglutaminase (mTG) 49 4.13 Fabrication of concentration gradient gelatin membrane 50 4.14 Fabrication of NGF gradient on gelatin membrane 52 4.15 In vitro neurite outgrowth on NGF gradient gelatin membrane 53 4.16 Characterization of NGF release from gelatin membrane 53 4.17 Statistical Analysis 54 Chapter 5. Results 55 5.1 Characterization of PGS 55 5.1.1 Physichemical property of PGS 55 5.1.2 Degradation test of PGS 58 5.2 Micro-pattern ablation on the surface of PGS 59 5.2.1 Top view of mciro-patterned PGS surface 59 5.2.2 Cross-section view of micro-patterned PGS surface 60 5.4 Characterization of Schwann cells 62 5.4.1 Flow cytometry 62 5.4.2 Immunocytochemisty staining 63 5.5 Neural stem cell differentiate into mature neuron lineage 64 5.6 Schwann cells co-culture with neural stem cells 65 5.7 Concentration gradient of Rhodamine B on gelatin membrane 65 5.8 NGF gradient on gelatin membrane 67 5.9 Cumulative NGF release from gelatin membrane 68 5.10 Neurite outgrowth on NGF gradient gelatin membrane 69 5.11 Neurite outgrowth on micro-patterned PGS 70 Chapter 6. Discussion 72 6.1 Characterization of PGS 72 6.2 Schwann cell medium containing forskolin promote differentiation of neural stem cells into mature neuron 73 6.3 Schwann cell co-culture with neural stem cells 74 6.4 Cumulative release of NGF from gelatin membrane and enhanced neurite outgrowth on NGF gradient gelatin membrane 74 Chapter 7. Conclusion 77 Reference 78

    1. Pfister, B.J., Gordon, T., Loverde, J. R., Kochar, A. S., Mackinnon, S. E., Cullen, D. K., Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Critical Review in Biomedical Engineering. 2011. 39(2): p. 81-124.
    2. Pabari, A., Yang, S. Y., Seifalian, A. M., Mosahebi, A., Modern surgical management of peripheral nerve gap. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2010. 63(12): p. 1941-1948.
    3. Fawcett, J.W., R.A. Asher, The glial scar and central nervous system repair. Brain Research Bulletin, 1999. 49(6): p. 377-391.
    4. Thorne, C.H., et al., Grabb and Smith's Plastic Surgery, 7th Edition. 2014: Lippincott Williams & Wilkins, a Wolters Kluwer business.
    5. Ray, W.Z., Mackinnon S.E., Management of nerve gaps: Autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Experimental neurology, 2010. 223(1): p. 77-85.
    6. Pfister, L.A., Papaloizos, M., Merkle, H. P., Gander, B., Nerve conduits and growth factor delivery in peripheral nerve repair. Journal of the Peripheral Nervous System, 2007. 12(2): p. 65-82.
    7. Daly, W., Yao, L., Zeugolis, D., Windebank, A., Pandit, A., A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of the Royal Society Interface. 2012. 9(67): p. 202-221.
    8. Oka, N., Kawasaki, T., Matsui, M., Tachibana, H., Sugita, M., Akiguchi, I., Neuregulin is associated with nerve regeneration in axonal neuropathies. NeuroReport, 2000. 11(17): p. 3673-3676.
    9. Watabe, K., Fukuda, T., Tanaka, J., Honda, H., Toyohara, K., Sakai, O., Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. Journal of Neuroscience Research, 1995. 41(2): p. 279-290.
    10. Hadlock, T., Sundback, C., Hunter, D., Cheney, M., Vacanti, J. P., A Polymer Foam Conduit Seeded with Schwann Cells Promotes Guided Peripheral Nerve Regeneration. Tissue Engineering: Part A, 2000. 6(2): p. 119-127.
    11. Ascano, M., Bodmer, D., Kuruvilla, R., Endocytic trafficking of neurotrophins in neural development. Trends in Cell Biology, 2012. 22(5): p. 266-273.
    12. Tang, S., Zhu, J., Xu, Y., Xiang, A. P., Jiang, M. H., Quan, D., The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials, 2013. 34(29): p. 7086-7096.
    13. Wang, Y., Ameer, G. A., Sheppard, B. J., Langer, R., A tough biodegradable elastomer. Nature Biotechnology, 2002. 20(6): p. 602-606.
    14. Rai, R., Tallawi, M., Grigore, A., Boccaccini, A. R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 2012. 37(8): p. 1051-1078.
    15. Fields, R.D., Lebeau, J. M., Longo, F. M., Ellisman, M. H., Nerve regeneration through artificial tubular implants. Progress in Neurobiology, 1989. 33(2): p. 87-134.
    16. Nectow, A.R., Marra, K. G., Kaplan, D. L., Biomaterials for the Development of Peripheral Nerve Guidance Conduits. Tissue Engineering Part B: Reviews, 2011. 18(1): p. 40-50.
    17. Braga-Silva, J., The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm.The Journal of Hand Surgery: British & European Volume. 1999. 24(6): p. 703-706.
    18. Lundborg, G., Rosen, B., Abrahamson, S. O., Dahlin, L., Danielsen, N., Tubular repair of the median nerve in the human forearm Preliminary findings. The Journal of Hand Surgery: British & European Volume, 1994. 19(3): p. 273-276.
    19. Merle, M., Dellon, A. L., Campbell, J. N., Chang, P. S., Complications from silicon-polymer intubulation of nerves. Microsurgery, 1989. 10(2): p. 130-133.
    20. Heath, C.A., Rutkowski, G. E., The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends in Biotechnology, 1998. 16(4): p. 163-168.
    21. Belkas, J.S., Shoichett, M. S., Midha, R., Peripheral nerve regeneration through guidance tubes. Neurological research, 2004. 26(2): p. 151-160.
    22. Archibald, S.J., Krarup, C., Shefner, J., Li, S. T., Madison, R. D., A collagen-based nerve guide conduit for peripheral nerve repair: An electrophysiological study of nerve regeneration in rodents and nonhuman primates. The Journal of Comparative Neurology, 1991. 306(4): p. 685-696.
    23. Yang, Y., Gu, X., Tan, R., Hu, W., Wang, X., Zhang, P., Zhang, T., Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnology Letters, 2004. 26(23): p. 1793-1797.
    24. Yang, Y., Ding, F., Wu, J., Hu, W., Liu, W., Liu, J., Gu, X., Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 2007. 28(36): p. 5526-5535.
    25. Deumens, R., Bozkurt, A., Meek, M. F., Marcus, M. A., Joosten, E. A., Weis, J., Brook, G. A., Repairing injured peripheral nerves: Bridging the gap. Progress in Neurobiology, 2010. 92(3): p. 245-276.
    26. Moore, A.M., Kasukurthi, R., Magill, C. K., Farhadi, H. F., Borschel, G. H., Mackinnon, S. E., Limitations of conduits in peripheral nerve repairs. Hand (New York, N.Y.), 2009. 4(2): p. 180-186.
    27. Evans, G.R.D., Brandt, K., Widmer, M. S., Lu, L., Meszlenyi, R. K., Gupta, P. K., Mikos, A. G., Hodges, J., Williams, J., Gurlek, A., Nabawi, A., Lohman, R., Patrick, C. W., Jr., In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials, 1999. 20(12): p. 1109-1115.
    28. de Ruiter, G.C., Spinner, R. J., Malessy, M. J., Moore, M. J., Sorenson, E. J., Currier, B. L., Yaszemski, M. J., Windebank, A. J., Accuracy of motor axon regeneration across autograft, single lumen, and multichannel poly(lactic-co-glycolic acid) (PLGA) nerve tubes. Neurosurgery, 2008. 63(1): p. 144-155.
    29. Oh, S.H., Kim, J. H., Song, K. S., Jeon, B. H., Yoon, J. H., Seo, T. B., Namgung, U., Lee, I. W., Lee, J. H., Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials, 2008. 29(11): p. 1601-1609.
    30. Oh, S.H., Lee, J. H., Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method. Journal of Biomedical Materials Research Part A, 2007. 80A(3): p. 530-538.
    31. Sun, M., Kingham, P. J., Reid, A. J., Armstrong, S. J., Terenghi, G., Downes, S., In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit. Journal of Biomedical Materials Research Part A, 2010. 93A(4): p. 1470-1481.
    32. Waitayawinyu, T., Parisi, D. M., Miller, B., Luria, S., Morton, H. J., Chin, S. H., Trumble, T. E., A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. The Journal of Hand Surgery, 2007. 32(10): p. 1521-1529.
    33. Nectow, A.R., Marra, K. G., Kaplan, D. L., Biomaterials for the development of peripheral nerve guidance conduits. Tissue Engineering: Part B, 2012. 18(1): p. 40-50.
    34. Wilhelm, J.C., Xu, M., Cucoranu, D., Chmielewski, S., Holmes, T., Lau, K. S., Bassell, G. J., English, A. W., Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. The Journal of Neuroscience, 2012. 32(14): p. 5002-5009.
    35. Xiong, Y., Zhu, J. X., Fang, Z. Y., Zeng, C. G., Zhang, C., Qi, G. L., Li, M. H., Zhang, W., Quan, D. P., Wan, J., Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Clinical Ophthalmology, 2014. 8: p. 2435-2440.
    36. Hsu, S.-H., Kuo, W. C., Chen, Y. T., Yen, C. T., Chen, Y. F., Chen, K. S., Huang, W. C., Cheng, H., New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomaterialia, 2013. 9(5): p. 6606-6615.
    37. Tseng, T.C., Hsu, S. H., Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials, 2014. 35(9): p. 2630-2641.
    38. Gu, Y., Zhu, J., Xue, C., Li, Z., Ding, F., Yang, Y., Gu, X., Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014. 35(7): p. 2253-2263.
    39. Lee, W., Frank, C. W., Park, J., Directed axonal outgrowth using a propagating gradient of IGF-1. Advanced Materials, 2014. 26(29): p. 4936-4940.
    40. Moore, K., MacSween, M., Shoichet, M., Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue engineering, 2006. 12(2): p. 267-278.
    41. Lee, D.-Y., Choi, B. H., Park, J. H., Zhu, S. J., Kim, B. Y., Huh, J. Y., Lee, S. H., Jung, J. H., Kim, S. H., Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel. Journal of Cranio-Maxillofacial Surgery, 2006. 34(1): p. 50-56.
    42. Midha, R., Munro, C. A., Dalton, P. D., Tator, C. H., Shoichet, M. S., Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. Journal of Neurosurgery, 2003. 99(3): p. 555-565.
    43. Terris, D.J., Toft, K. M., Moir, M., Lum, J., Wang, M., Brain-derived neurotrophic factor–enriched collagen tubule as a substitute for autologous nerve grafts. Archives of Otolaryngology–Head & Neck Surgery, 2001. 127(3): p. 294-298.
    44. Barras, F.M., Pasche, P., Bouche, N., Aebischer, P., Zurn, A. D., Glial cell line-derived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat. Journal of Neuroscience Research, 2002. 70(6): p. 746-755.
    45. Sun, M., McGowan, M., Kingham, P. J., Terenghi, G., Downes, S., Novel thin-walled nerve conduit with microgrooved surface patterns for enhanced peripheral nerve repair. Journal of Materials Science: Materials in Medicine, 2010. 21(10): p. 2765-2774.
    46. Yeong, W.Y., Yu, H., Lim, K. P., Ng, K. L., Boey, Y. C., Subbu, V. S., Tan, L. P., Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer. Tissue Engineering Part C: Methods, 2010. 16(5): p. 1011-1021.
    47. Yao, L., de Ruiter, G. C., Wang, H., Knight, A. M., Spinner, R. J., Yaszemski, M. J., Windebank, A. J., Pandit, A., Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials, 2010. 31(22): p. 5789-5797.
    48. Kim, J.R., Oh, S. H., Kwon, G. B., Namgung, U., Song, K. S., Jeon, B. H., Lee, J. H., Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Engineering Part A, 2013. 19(23-24): p. 2674-2685.
    49. Chew, S.Y., Mi, R., Hoke, A., Leong, K. W., Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Advanced Functional Materials, 2007. 17(8): p. 1288-1296.
    50. Kalil, K. Dent, E. W., Touch and go: guidance cues signal to the growth cone cytoskeleton. Current Opinion in Neurobiology, 2005. 15(5): p. 521-526.
    51. Jang, K.J., Kim, M. S., Feltrin, D., Jeon, N. L., Suh, K. Y., Pertz, O., Two distinct flopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS ONE, 2010. 5(12): p. e15966.
    52. Kaewkhaw, R., Scutt, A. M., Haycock, J. W., Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nature Protocols, 2012. 7(11): p. 1996-2004.
    53. Paguirigan, A.L., Beebe, D. J., Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture. Nature Protocols, 2007. 2(7): p. 1782-1788.
    54. Kemppainen, J.M., Hollister, S.J., Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, 2010. 94A(1): p. 9-18.
    55. Wang, Y., Kim, Y. M., Langer, R., In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, 2003. 66A(1): p. 192-197.
    56. Lepski, G., Jannes, C. E., Nikkhah, G., Bischofberger, J., cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels. Frontiers in Cellular Neuroscience, 2013. 7: p. 155.
    57. Suzuki, S., Namiki, J., Shibata, S., Mastuzaki, Y., Okano, H., The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. Journal of Histochemistry and Cytochemistry, 2010. 58(8): p. 721-730.
    58. Sternberger, N.H., Sternberger, N. H., Itoyama, Y., Kies, M. W., Webster, H. D., Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation. Proceedings of the National Academy of Sciences, 1978. 75(5): p. 2521-2524.
    59. Ito, A., Mase, A., Takizawa, Y., Shinkai, M., Honda, H., Hata, K., Ueda, M., Kobayashi, T., Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. Journal of Bioscience and Bioengineering, 2003. 95(2): p. 196-199.
    60. Elzoghby, A.O., Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 2013. 172(3): p. 1075-1091.
    61. Angeletti, R.H. Bradshaw, R.A., Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proceedings of the National Academy of Sciences, 1971. 68(10): p. 2417-2420.
    62. Lo, E.H., Wang, X., Cuzner, M. L., Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activators and matrix metalloproteinases. Journal of Neuroscience Research, 2002. 69(1): p. 1-9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE