簡易檢索 / 詳目顯示

研究生: 沈家本
Chia-Ben Shen
論文名稱: 利用支配尋找二元樹上的最大共同子樹
Using Domination to Find the Maximum Agreement Subtree on Binary Trees
指導教授: 唐傳義
Chuan-Yi Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 19
中文關鍵詞: 最大共同子樹支配範圍搜尋樹
外文關鍵詞: maximum agreement subtree, domination, dominate, range search tree, tree
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 演化樹是種有根的且葉子有標號的樹,而對於這樹中的每一個內部節點,它有兩個以上的孩子。在計算生物學上,對於給定的一群物種建構一棵演化樹是基本而實在的工作。很不幸地,不同的演算法往往產生不同的演化樹,而即使對於相同的一群物種,不同的研究也有不同的演化結果。因此,如何在這些不同的演化樹上去找到它們的一致性變得非常重要且迫切了。在本篇論文中,我們把焦點放在一系列的一致性問題中最讓人感興趣的一個:尋找最大共同子樹問題(the maximum agreement subtree problem)。
    尋找二元樹中最大共同子樹問題定義如下:給定一群其葉子標號在集合L的樹的集合T = { T1, T2, T3, …, Tk } 而其中 T1 是棵二元樹,在L集合上尋找一個最大的卡內基子集使得對於T1, T2, T3, …, Tk 在拓樸學上的限制是同形的。首先,我們會先介紹Bryant的演算法[3];接著利用支配來改進Bryant的演算法並利用多維的橋式範圍搜尋樹(bridged range search tree)來實作。儘管時間複雜度和最新發表的論文中一樣是O( n2logkn )[15],但實作上卻比以往的快了許多。


    An evolutionary tree is a rooted, leaf-labeled tree. Each internal node of the tree has at least two children. Constructing evolutionary trees for the given species is a fundamental work in computational biology. Unfortunately, different algorithms usually produce different evolutionary trees and different research may have different evolutionary trees even on the same set of the species. It becomes more necessary to know the consensus between those trees recently. We focus on one of the consensus problems and agreement problems: the maximum agreement subtree (MAST) problem.
    The MAST problem is as follow : given a set a set T = { T1, T2, T3, …, Tk } of leaf-labeled trees on leaf-labeled set L where T1 is a binary tree, find a maximum cardinality subset X of L such that the topological restrictions of T1, T2, T3, …, Tk are isomorphic. In this paper, we introduce Bryant’s algorithm first and use domination to improve Bryant’s algorithm and implement by bridged range search tree method. Although the time cost is O( (n^2)(logn)^k ), the same to original paper, but the implementation is quicker than before.

    1. Introduction 1 2. Bryant's Algorithm for the MAST Problem 4 3. An Improved Algorithm for Implementation 7 4. Conclusion and Future Work 10 5. Reference 18

    [1] C.R. Finden and A.D. Gordon, ”Obtaining common pruned trees”, J. Classification, Vol. 2, 1985, pp. 255-276.

    [2] A. Amir and D. Keselman, “Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms,” SIAM J. Comput. , Vol. 26, 1997, pp.1656-1669

    [3] D. Bryant, “Hunting for trees, building trees and comparing trees: theory and methods in phylogenetic analysis”, Ph. D. thesis, Dept. Math., University of Canterbury, 1997, pp.117-182

    [4] R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup, “An algorithm for the maximum agreement subtree problem for binary trees,” SIAM J. Comput, Vol.30, 2000, PP. 1385-1404

    [5] M. Farach, T. Przytycka, and M. Thorup, “The maximum agreement subtree problem for binary trees,” in Proceedings of the 2nd European Symposium on Algorithms, Corfu, Greece, 1995, Lecture Notes in Comput. Sci. 979, SpringerVerlag, New York, 1995, pp.381-393.

    [6] M. Farach, T. Przytycka, and M. Thorup, “On the agreement of many trees,” Information Processing Letters, Vol.55, 1995, pp.297-301

    [7] M. Farach and M. Thorup, “Fast comparison of evolutionary trees,” Inform. and Comput., Vol.123, 1995, pp.29-37.

    [8] M. Farach and M. Thorup, “Sparse dynamic programming for evolutionary tree comarison,” SIAM J. Comput., Vol.26, 1997, pp.210-230.

    [9] M.L. Fredaman, “Two applications of a probabilistic search technique: Sorting X+Y and building balanced search trees,” in Proceedings of the 7th ACM Symposium on the Theory of Computing, ACM, New York, 1975, pp.240-244.

    [10] M. Mehlhorn, “A best possible bound for the weighted path length of binary search trees,” SIAM J. Comput., Vol.6, 1977, pp.235-239.

    [11] E. Kubicka, G. Kubicki, and F.R. McMorris, “An algorithm to find agreement subtrees,” J. Classification, Vol.12, 1995, pp.91-100.

    [12] M. Steel and T. Warnow, “Kaikoura tree theorems: Computing the maximum agreement subtree,” Information Processing Letters, Vol.48, 1993, pp.77-82.

    [13] G. S. Lueker, “A data structure for Orthogonal Range Queries,” Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 28-34.

    [14] K. Mehlhorn, Data structures and Algorithms 3. Multi-dimensional Searching and Computational Geometry, Springer, Berline, Heidelberg, New York, 1984

    [15] Maw-Shang Chang, Ling-Ju Hung, “Range Search Trees and the Maximum Agreement Subtree Problem on Binary Trees,” Chung Cheng University, Taiwan, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE